
@davearonsonwww.Codosaur.us

ACRUMEN:
What IS Software Quality, Anyway?

by Dave Aronson
T.Rex-2023@Codosaur.us

(NOTE TO SELF: HAVE BUSINESS CARD READY! Maybe find a better picture for “how do we know”?)

Current time: ~18.5-19 mins, want 20 MAX, so WATCH THE AD-LIBS!

https://twitter.com/davearonson
http://www.Codosaur.us
mailto:T.Rex-2023@Codosaur.us

@davearonsonwww.Codosaur.us

ACRUMEN:
What IS Software Quality, Anyway?

by Dave Aronson
T.Rex-2023@Codosaur.us

https://twitter.com/davearonson
http://www.Codosaur.us
mailto:T.Rex-2023@Codosaur.us

@davearonsonwww.Codosaur.us

Sveiki, Vilniau!

👋
(Hello, Vilnius!)

Image: standard emoji

SveikEE VILnio!

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

Aš esu Dave Aronson,

(I'm Dave Aronson,)
Image: me speaking at JSConf Hawai’i 2020

AHSH EHsoo Dave Arrronson,

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

T. Reksas iš Codosaurus,

(the T. Rex of Codosaurus,)
Image: my company logo!

T. RRREKsas ish Codosowrus,

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

ir atėjau čia

(and I came here)
Image: https://www.pngegg.com/en/png-wgwuj

irrr ahTAYyo cheh

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

kad išmokinčiau jus apie

👨🏫
(to teach you about)

Image: standard emoji

kad ishmoKIHNchyo yoos ah-PEE-eh

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

ACRUMEN

ACRUMEN!

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

Visgi . . .

☝
(But . . .)

Image: standard emoji

VIZgih . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

toliau tesiu pasakojima angliškai.

🇺🇸
(I will do it in English.)

Image: standard emoji

tohlYO TESSu PassaKoimah AHNglishkay. (PAUSE!)

Mainly because you’ve just heard almost all the Lithuanian I speak! (PAUSE!)

This talk will be in sharp contrast to the others. You’ve heard about features specific to .NET, TypeScript, and C#. But this talk will be so technology-
agnostic, that there is actually . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: code of my github.com/CodosaurusLLC/genaver, colored by Reveal.JS, plus standard nope-scope

. . . no code in it at all! Not for any lack of coding expertise, as I have over 38 years of experience in a wide variety of programming languages. Rather, it’s
mainly to emphasize that, despite the way many of us treat it so, it’s not all about the code! In fact, I deliberately avoid saying “code quality”, since that is
just part of my overall topic of software quality.

So I’m here to teach you my definition of software quality, but . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://tenor.com/view/why-huh-but-why-gif-13199396

. . . why? We all agree we need more quality, but without a definition, it’s very hard to achieve, or to get someone else to acknowledge that we have
achieved it. So, I’m trying to get everybody on the same page. (Yeah, good luck with that!)

Several years ago, I was looking for a good definition, but all the ones I found had serious problems. Most were . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

TERMS

Image: https://pixabay.com/id/vectors/khawatir-membayar-uang-kertas-pria-30148/ + my text

. . . long lists of complicated terms, full of developer jargon. That’s fine for talking amongst ourselves, but I wanted a definition that even non-technical
people would understand, so they could give us more precise feedback about exactly how our software sucks.

Some definitions were . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://www.flickr.com/photos/59937401@N07/5857412037

. . . proprietary, making us buy expensive software or documents. Some were only applicable within the context of certain styles or technologies, often also
proprietary. I felt that all of that was just plain wrong. I wanted something we could all use, for free.

Some definitions focused exclusively on issues of interest to . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

🤓
Image: unicode nerd-face emoji

. . . us developers, ignoring the needs of the users and other stakeholders. Some weren’t even about the software at all, but all about the . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us
Images: https://pixabay.com/illustrations/meeting-conference-personal-3321175/

and many copies of https://pixabay.com/vectors/papers-stack-heap-documents-576385/

. . . process, or the byproducts, like meetings or documents. These may be helpful, but to make them the definition, I felt totally missed the point.

I didn't see anything that I liked, nor that was commonly accepted, so in the spirit of . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: from https://xkcd.com/927/ (license: https://creativecommons.org/licenses/by-nc/2.5/)

. . . XKCD (PAUSE!), I decided to make my own.

To keep it simple, I (step back) zoomed out from . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://commons.wikimedia.org/wiki/File:Indian_Weeds.jpg

. . . down in the weeds, where we developers tend to live, up to about . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://www.flickr.com/photos/nasacommons/8980505397

. . . low earth orbit, so I could look at continents, not pebbles. That let me trim it down to just six aspects, with simple names and relatively simple
explanations. The overall explanation literally fits on the back of a business card, and (HOLD UP BIZ CARD!) here's mine to prove it. See me afterward if
you want one as a cheat-sheet.

I call this list of aspects . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

ACRUMEN

. . . ACRUMEN, which is a Latin word for sour fruit, such as . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://pixabay.com/en/lemonade-lemons-glass-beverage-1447521/

. . . lemons. That’s why lemon yellow is the Official Color of ACRUMEN.

But what is ACRUMEN in this context?

The acronym ACRUMEN (try saying that ten times fast!), just takes those six aspects, and . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

1:
2:
3:
4:
5:
6:

. . . puts them in priority order.

By now you’re probably wondering, WHAT ARE THE ASPECTS ALREADY?! They are that . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

ACRUMEN means that software should be:

. . . software should be: (INHALE) . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

ACRUMEN means that software should be:

Appropriate

Correct

Robust

Usable

Maintainable

Efficient

. . . Appropriate, Correct, Robust, Usable, Maintainable, and Efficient. But what does all that mean? First, it needs to be . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

ACRUMEN means that software should be:

Appropriate : doing the right job

Correct

Robust

Usable

Maintainable

Efficient

. . . doing what the stakeholders need it to do, in other words, doing the right job. Then it needs to be . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

ACRUMEN means that software should be:

Appropriate : doing the right job

Correct : doing the job right

Robust

Usable

Maintainable

Efficient

. . . doing that job correctly, or in other words, doing the job right. It should be . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

ACRUMEN means that software should be:

Appropriate : doing the right job

Correct : doing the job right

Robust : hard to make malfunction or seem to

Usable

Maintainable

Efficient

. . . hard for anyone to make it malfunction, or even seem to, but it should be . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

ACRUMEN means that software should be:

Appropriate : doing the right job

Correct : doing the job right

Robust : hard to make malfunction or seem to

Usable : easy for users to use

Maintainable

Efficient

. . . easy for the users to use and . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

ACRUMEN means that software should be:

Appropriate : doing the right job

Correct : doing the job right

Robust : hard to make malfunction or seem to

Usable : easy for users to use

Maintainable: easy for devs to change

Efficient

. . . the developers to change. Dead last despite how we developers tend to worship this, it should be . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

Appropriate : doing the right job

Correct : doing the job right

Robust : hard to make malfunction or seem to

Usable : easy for users to use

Maintainable: easy for devs to change

Efficient : going easy on resources

ACRUMEN means that software should be:

. . . easy on resources.

So, what’s the N for? Nnnnn . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

. . . nothing! I just tacked it on to make a real word.

While all that’s fresh in our minds, I'll address one . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

? ? ?
. . . frequently asked question:

aside from going into detail on the tips, how do we actually use ACRUMEN itself, the list of aspects?

Mainly, we can keep it in mind as a . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://pixabay.com/en/checklist-list-check-check-list-911840/

. . . checklist, when writing or evaluating software. We can ask, is it Appropriate, is it Correct, and so on, or how good is it, on some scale, in each aspect, or
is it good enough for our needs? And if it's not good enough, what can be done to . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://www.flickr.com/photos/syume/4908943709/

. . . make it so?

In the short term, we can ensure that our projects are likely to meet these criteria. In the long term, we can ensure that our processes support these criteria,
by including helpful activities, maybe even an explicit evaluation against these criteria. We can also set . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://www.flickr.com/photos/bensutherland/205606714

. . . targets, for how good we need the system to be in each aspect.

Now we'll look closer at each aspect, starting with . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

. . . Appropriateness.

If our software doesn’t have this, then Nothing. Else. Matters. (PAUSE!) If our software is doing the wrong job, it doesn’t matter how well it’s doing the
wrong job. So, appropriateness is not only more important than any other aspect, it’s even more important than . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

A
CRUME

Image: https://pixabay.com/en/balance-scale-justice-law-judge-154516/ + my text & lines

. . . all the others put together. And yet, we developers are generally not taught that this is even a thing, let alone one that we need to think about.

To prove this point, let’s try a little thought experiment. Suppose you want a program to play . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

≠
Image: https://bs.wikipedia.org/wiki/

Datoteka:AAA_SVG_Chessboard_and_chess_pieces_03.svg
Image: https://commons.wikimedia.org/wiki/File:Draughts.svg

. . . checkers, and I write for you the world’s greatest chess playing program. It’s as correct, robust, usable, maintainable, and efficient as anyone could ever
want. But you probably won’t be happy with it, because . . . it’s not checkers. It’s not what you asked for. It's not what you need. In ACRUMEN terms, it’s
not appropriate.

So how do we achieve appropriateness? In an ideal world, we would have . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://www.flickr.com/photos/wocintechchat/22543243101

. . . frequent direct contact with the stakeholders, to ask them questions and get their feedback. Unfortunately, we don't usually get that opportunity, and
often not even requirements analysts, or business analysts. So we usually have to settle for occasional remote indirect contact with a representative of
some stakeholders. It doesn't work quite as well, but having some communication with someone with a clue, is vital.

Once we think we have a good grasp of the stakeholders’ needs, we can show them, or their representatives, . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://www.flickr.com/photos/qubodup/14793417722

. . . mockups and prototypes of what we intend to do, and demos of what we have done. This gives them a chance to correct our wrong ideas of their needs,
before we go too far down the wrong rabbit-hole. There’s another thing, though, that I’ll be returning to over and over in this talk. We can propose . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://en.wikipedia.org/wiki/File:Telefunken_FuBK_test_pattern.svg

. . . tests! In particular, I recommend the Given/When/Then pattern: given these preconditions, when this happens, then this is the result. This makes a
great link between the worlds of business and tech, because the business people can understand it, and we can turn it into a runnable test.

Our next aspect is . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://commons.wikimedia.org/wiki/File:Correct.svg

. . . correctness. Nothing can actually stop us from writing code that isn’t correct, at least with the tools we have today. So, the big question is: . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://zh.wikipedia.org/wiki/File:Thermoskanne(hoch,_silber).JPG

. . . how do we know? (PAUSE!)

As you probably know . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://commons.wikimedia.org/wiki/File:Test_type_to_test_eyesight,_England,_1920-1960_Wellcome_L0058205.jpg

. . . tests let us know whether or not our code is correct . . . assuming of course that the tests themselves are correct, but that’s another story.

I’ll skip over a lot of common advice about how many of what kinds of tests to write and how and when, but I’l point out that the usual types of tests, like unit,
integration, feature, system, and so on, can only prove the correctness of cases we thought to test. But there are some advanced techniques that can help
find cases we didn’t think of, such as . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://www.flickr.com/photos/athomeinscottsdale/3279949186

. . . property-based testing and . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://pixabay.com/en/genetic-modification-mutant-mutation-549889/

. . . mutation testing — which I’ll be presenting about on Friday.

We should have enough test coverage, of assorted kinds and levels, and verified to be actually meaningful, to have strong confidence in the correctness of
our code.

Next up we have . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://commons.wikimedia.org/wiki/File:Hanomag_Robust_901A_Cloppenburg.jpg

. . . robustness. The short explanation is that it’s hard to make the software malfunction, or even seem to, but what does that mean?! There are a few other
things, but most of what I mean is covered by a core concept of information security: . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

Confidentiality

AvailabilityIn
te

gr
it

y

Image: https://cdn.pixabay.com/photo/2016/03/31/17/52/geometry-1293961_960_720.png + my words

. . . the CIA Triad. No, it’s nothing to do with spies and gangsters, it’s this triangle up here, of Confidentiality, Integrity, and Availability. So, robust software
does NOT:

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://commons.wikimedia.org/wiki/File:Somebody_blabbed.jpg

. . . reveal data when it’s not supposed to, . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Img: http://www.barksdale.af.mil/News/Article/321176/military-clothing-sales-reopens-inside-base-exchange/

. . . alter data when it’s not supposed to, . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://pixabay.com/en/error-www-internet-calculator-101408/

. . . or become unavailable when it’s not supposed to, even if an attacker is trying to . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://pixabay.com/en/star-wars-darth-wader-villain-2463926/

. . . force it to do these things.

So how do we achieve all that?

Again, we could bring in the experts, which would be . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://commons.wikimedia.org/wiki/File:Javad_alizadeh_-penetrating-pen.jpg

. . . penetration testers, or for short, pen testers. But, they’re expensive, and disruptive, because they need to test the production system. So, again, we'll
usually have to do without them. But, we can use some of their tools, such as software like . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://pixabay.com/en/girl-child-trampoline-blonde-212022 (CC0)

. . . static analyzers, . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://www.wannapik.com/vectors/15576

. . . fuzzers, and . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://photojournal.jpl.nasa.gov/catalog/PIA03883

. . . probes. But that’s only covering actual fragility. What about seeming fragile? For that, we must ask ourselves . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://pixabay.com/en/boards-height-balance-2040575/

. . . what could go wrong. Our software should handle all reasonably foreseeable problems, from simple user error, to system problems like a full disk, and
even external problems like losing a network connection, as gracefully as possible, while giving as little information as possible to potential attackers.

Our next aspect is one often seen as a tradeoff with security: . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://www.flickr.com/photos/slgc/24803618672

. . . usability. Hard-to-use software can cause headaches, or even lead the user to do the wrong thing. Remember what happened in Hawai'i in January
2018, due to software that was hard to use? They had a false alarm about an incoming nuclear missile! Just think what could happen if that were the launch
system, not just an alarm!

Unfortunately, if we Google software usability, we find mostly things about ensuring that users with various challenges can use our software about as well as
the rest of us. In other words, accessibility. That’s a good goal in itself, but I’m adding on that it should be . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://www.flickr.com/photos/jeepersmedia/13943817487

. . . easy for everyone to use, not just equally difficult. Granted, the user may be facing various challenges. We can start with the ones that accessibility
usually addresses, like low vision, color vision, hearing, or fine motor control. But there are other whole types of challenges we should be aware of, like lack
of literacy, cultural knowledge, and even intelligence. Yes, we may joke about stupid users, but statistically, about half of them will be below average.

So how do we achieve all this? Once again, ideally we can bring in . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://commons.wikimedia.org/wiki/File:The_Experts_MET_DT209332.jpg

. . . the experts, like ideally a User Experience expert, maybe a User Interface expert, or at the very least a designer, even an old-fashioned print graphic
designer. Again, we’ll usually have to do without their help, but we can go a long way by applying their principles. For instance . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us
Image: http://stuffthathappens.com/blog/simplicity/

(awaiting permission, but Fair Use anyway due to educational purpose)

. . . here we see an illustration of the KISS Principle, meaning “Keep It Simple, Stupid!” I think many of us would recognize some of our own work in that
cluttered mess at the end.

Also, it may not be as definable and quantifiable as correctness, but a user interface can still be . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://www.flickr.com/photos/eekim/1819059803

. . . tested! We can watch some of our typical users use it (which is what’s going on in this photo), and fix their pain points.

The next aspect is the one we usually think of most: . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://nara.getarchive.net/media/japanese-maintenance-personnel-observe-as-sergeant-robert-morris-of-the-67th-3024eb

. . . maintainability. We’d probably all agree that the basic concept is that “maintainable” software is easy to change. But I add that it’s easy to change, with .

. .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://pxhere.com/en/photo/615255

. . . low chance of error (we don't want a dicey situation), and . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://pixabay.com/en/potatoes-fear-horror-pot-cook-3119211/

. . . low fear of error, even for . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://pxhere.com/en/photo/796734

. . . a novice programmer, who is . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://commons.wikimedia.org/wiki/File:New_Guy_(5895483627).jpg

. . . new to our project.

Now how do we achieve all this? For better or worse, the vast majority of software engineering advice is aimed squarely at this. So, rather than expound on
lots of generic principles like YAGNI and SOLID, and so on, I’m going to stick to my theme and tell you how . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://www.flickr.com/photos/mulad/287385862

. . . testing can help with maintainability. The old tests from any previous feature additions, bug fixes, and so on, form a regression test suite, to catch
anything we break, that used to work. Just knowing that that is there, as a safety net, will reduce our fear of error. And that will allow us to progress at a
quick pace with a clear and focused mind, rather than creeping along slowly and erratically because we’re terrified of breaking something accidentally and
not discovering it until users complain. And that speedup is why I mentioned fear at all.

For the final aspect, software should be . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://toppng.com/free-image/prius-toyota-PNG-free-PNG-Images_68192

. . . efficient, in other words, go easy on resources. Mainly we know about techical resources, like CPU, RAM, bandwidth, and screen space, but there are
other kinds, such as the user's patience and brainpower, and the company's money!

So how do we achieve efficiency? There are many kinds of resources, and many ways each can be abused, so there are many many different kinds of
inefficiency, but for now I’m going to focus on fixing the most obvious and common kind: slowness.

I’m sure we’ve all had a program run slowly, then we stare at the code, spot where we think it’s inefficient, spend a long time optimizing that little piece, run
the program again, and . . . it’s still slow! Right? Don’t do that!

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://pixabay.com/en/diet-calorie-counter-weight-loss-695723/

Measure it instead! Humans aren’t really very good at spotting the inefficiencies, but there are profilers and traffic sniffers and such, that will tell us exactly
where, or at least when, we’re using too much CPU, RAM, bandwidth, etc. Then we can track down the root cause, fix it, and slap a . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://www.nasa.gov/multimedia/imagegallery/image_feature_457.html

. . . performance test around it (you knew I had to mention testing eventually), to prevent that kind of regression.

In conclusion . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

If our software is
Appropriate,
Correct,
Robust,
Usable,
Maintainable, and
Efficient, then
Nobody should be sour about it!

Image: https://www.maxpixel.net/Face-Fruit-Citrus-Fruit-Angry-Sour-Citron-Lemon-155021

. . . if we remember to make sure that our software is Appropriate, Correct, Robust, Usable, Maintainable, and Efficient, then nobody should have any cause
to be sour about the FRUITS OF OUR LABORS.

And now . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

Codosaur.us/acrumen

T.Rex-2023@Codosaur.us
twitter.com/DaveAronson

linkedin.com/in/DaveAronson

codosaur.us/reds/acrumen-bs-app-23-slides

. . . we don’t have much time for Q&A, but there’s a link for more info, my assorted contact info, and the URL where the slides will be eventually, complete
with a script. Now go out there and write better software, now that we can all agree what that even means.

https://twitter.com/davearonson
http://www.Codosaur.us
https://www.Codosaur.us/acrumen
http://codosaur.us/reds/acrumen-bs-app-23-slides

