
@davearonsonCodosaur.us

Kill All Mutants!

(Intro to Mutation Testing)


by Dave Aronson

(Blank slide so I can flip to a new one to start my timer, ignore this.)


CURRENT TIME: ~23, speaking a bit slow, or 25:15 speaking quite slow, SO SLOW BUT NOT TOO SLOW, AND WATCH THE AD-LIBS!

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

Kill All Mutants!

(Intro to Mutation Testing)


by Dave Aronson

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

Sveiki, Vilniau!


👋

(Hello, Vilnius!)

Image: standard emoji

SveikEE VILnio!

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

Aš esu Dave Aronson,


(I'm Dave Aronson,)
Image: me speaking at JSConf Hawai’i 2020

AHSH EHsoo Dave Arrronson,

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

T. Reksas iš Codosaurus,


(the T. Rex of Codosaurus,)
Image: my company logo!

T. RRREKsas ish Codosowrus,

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

ir atskridau čia


🛫...🛬

(and I flew here)

Image: standard emoji

ir atskrihDOH cheh

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us
Images: https://pixabay.com/vectors/dinosaur-tyrannosaurus-t-rex-6273164/

and https://pixabay.com/vectors/bird-flying-wings-dinosaur-ancient-44859/

ant savo augintinio pterodaktilio


(on my pet pterodactyl)

ahnt sahvo auGIHNtihnyo PterodakTIHlyo

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

kad išmokinčiau jus


👨🏫

(to teach you)

Image: standard emoji

kad išmokinčiau jus


👨🏫

(to teach you)

kad išmokinčiau jus


👨🏫

(to teach you)

kad išmokinčiau jus


👨🏫

(to teach you)

kad ishmoKIHNchyo YOOS

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

kaip reikia naikinti mutantus!


(to kill mutants!)
Image: https://pixabay.com/vectors/turtle-tortoise-cartoon-animal-152079/

XX

kayp Rrraykya nayKIHNtih mooTAHNtoos!

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

Visgi . . .


☝

(But . . .)

Image: standard emoji

VIZgih . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

toliau tesiu pasakojima angliškai.


🇺🇸

(I will do it in English.)

Image: standard emoji

tohlYO TESSu PassaKoimah AHNglishkay.  (PAUSE!)


Mainly because you’ve just heard almost all the Lithuanian I speak!  (PAUSE!)


So what on . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: repeats of https://www.publicdomainpictures.net/en/view-image.php?image=86447

. . . Infinite Earths, makes . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: https://pixabay.com/vectors/genetic-testing-gene-panel-genetics-2316642

. . . mutation testing different from all the other software testing techniques?  The main difference is that most of the others are about . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: https://pixabay.com/illustrations/tick-green-tick-correct-642162/

. . . checking whether our code is correct.  But mutation testing . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: https://xkcd.com/1339/

. . . assumes that our code is correct, at least in the sense of passing its tests.  Instead, mutation testing checks two other qualities.  In a typical codebase, I 
think the more important one is that our test suite is . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

"use strict";

. . . strict.  Now you might think that’s what test coverage is for, but . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image:  generated by me on imgflip.com, original movie still used under Fair Use clause

. . . no.  The only thing that test coverage tells us is that at least one test ran . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

class Conway:

  ALIVE = "*"

  DEAD  = " "


  @classmethod

  def next_state(cls, cur_state, neighbors):

    if cur_state == cls.ALIVE:

      r = cls.ALIVE if neighbors in [2,3] else cls.DEAD

    else:

      r = cls.ALIVE if neighbors == 3 else cls.DEAD

    return r


  def another_func:

    # whatever

. . . the code it claims is “covered”.  It tells us NOTHING about whether the correctness of the code made any difference to whether any test passed.  And 
that’s what “tested” really means, right?


So how can we tell if our code really is tested?  That’s where mutation testing comes in.  To check that our test suite is strict, a mutation testing tool will try 
to . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: https://commons.wikimedia.org/wiki/File:Mind_the_gap_2.JPG

. . . find the gaps in our test suite, that let our code get away with unintended behavior.  Once we find gaps, we can close them by either adding tests or 
improving existing tests.  Lack of strictness comes mainly from lack of tests, or poorly written tests.


The other thing mutation testing checks is that our code is . . .


https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: https://pxhere.com/en/photo/825760

. . . meaningful, so that any semantic change to the code will produce a noticeable change in its behavior.  Lack of meaning comes mainly from code being 
unreachable, redundant, or otherwise just not having any real effect.  When we find "meaningless" code, the usual fix is just to remove it.


Mutation testing . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: https://www.flickr.com/photos/garryknight/2565937494

. . . puts these two together, by checking that every change to the code, that the tool knows how to do, does make a noticeable change to its behavior, and 
that the test suite is strict enough that at least one test notices that change, and fails.


That's the positive side, but there are some drawbacks.  As . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: https://commons.wikimedia.org/wiki/File:Frederick_Brooks_IMG_2279.jpg

Fred Brooks, author of

"No Silver Bullet —

Essence and Accident in 
Software Engineering"

(1986 paper)

. . . Fred Brooks told us in 1986, there's no . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: https://www.flickr.com/photos/sdasmarchives/4590226412

. . . silver bullet!  The first drawback is that it's rather . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: https://www.jtfb.southcom.mil/Media/Photos/igphoto/2000888525/

. . . hard labor for the CPU, and therefore usually ra-ther slllooooow.  We certainly won’t want to mutation-test our entire codebase every time we save a file!  
Maybe over a lunch break for a smallish system, or a weekend for a large one.  Fortunately, most tools let us just check specific functions, classes, files, and 
so on.  Plus, they usually include some kind of . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: https://www.maxpixel.net/Progress-Graph-Growth-Achievement-Analyst-Diagram-3078543

. . . incremental mode, so that we can test only the changes since the last mutation test, or the last git commit, or some such milestone.  With such filtering, 
maybe we can test just the relevant changes on each save, or at least over a much shorter break.


Another drawback is that it’s often . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: https://pxhere.com/en/photo/717939

. . . not at all clear what to do about the results!  It tells us that some particular change to the code made no difference to the test results, but what does that 
even mean?  It takes a lot of interpretation to figure out what a mutant is trying to tell us.  They're usually trying to tell us that our code is meaningless, or our 
tests are lax, or both, but it can be very hard to figure out exactly how!  Even worse, sometimes it's a . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: https://www.flickr.com/photos/jared422/19116202568

The Boy who

Cried Wolf

. . . false alarm, because the mutation didn't make a test fail, but it didn't make any actual difference in the first place.  It can still take quite a lot of time and 
effort to figure that out.


Now that we've seen some of the pros and cons, what does mutation testing do?  It . . .


https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: https://commons.wikimedia.org/wiki/File:Thrust_with_fault_propagation_fold.svg

. . . mutates copies of our code, hence the name.  It does this to create test failures, also known as . . .


https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: https://commons.wikimedia.org/wiki/File:Thrust_with_fault_propagation_fold.svg

. . . faults.  So, mutation testing can be categorized as a “fault-based” testing technique, which means that it’s related to something you might already know:

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us
Image: https://github.com/Netflix/chaosmonkey/raw/master/docs/logo.png


(used for educational Fair Use purposes)

. . . Chaos Monkey, from Netflix.  But the way mutation testing does it, is sort of . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us
Image: https://github.com/Netflix/chaosmonkey/raw/master/docs/logo.png


(used for educational Fair Use purposes)

. . . upside down from what Chaos Monkey does.  Chaos Monkey is best known for . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: https://pixabay.com/vectors/injection-vaccine-shot-medical-40696/ + my text

FAULTS

. . . injecting faults into Netflix's production network.  (QUICK-CUT TO NEXT SLIDE!)

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image:  https://commons.wikimedia.org/wiki/File:Edvard_Munch,_1893,_The_Scream, 
_oil,_tempera_and_pastel_on_cardboard,_91_x_73_cm,_National_Gallery_of_Norway.jpg

If all still goes well, in the sense that Netflix's customers don't notice, and their metrics still look good, then Netflix knows that their error recovery is working 
fine.  Mutation testing, however, injects semantic . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: https://www.flickr.com/photos/funkblast/16937812322

 Before  After 

. . . changes, not necessarily problems.  We hope each of these changes will create faults, but that depends on the test suite.  It injects them into . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: https://pixabay.com/vectors/gene-editing-icon-crispr-icon-2375787/

. . . copies of our code, not our actual network, and does this in our . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: from https://londonnewsonline.co.uk/nhs-waiting-lists-for-tests-to-diagnose-heart-issues-and-cancer-up-nearly-10/

. . . test environment, not production.  (Whew!)  And if everything still goes well, in the sense that . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

$ mutation_test

........................................

........................................

........................................

........................................

........................................

........................................

........................................

280 tests, 420 assertions, 4,987 mutants,

0 failures, 0 errors, 0 excluded

. . . our tests all still pass, that doesn't mean that all is well, that means that . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

$ mutation_test

........................................

........................................

........................................

........................................

........................................

........................................

........................................

280 tests, 420 assertions, 4,987 mutants,

0 failures, 0 errors, 0 excluded

. . . there is a problem!  Remember, each change to our code should make at least one test fail.


So how does mutation testing actually work?  First, the tool . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: https://commons.wikimedia.org/wiki/File:Disassembled-rubix-1.jpg

. . . breaks our code apart into pieces to test, usually our functions.  Then, for each one, it makes . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: https://www.deviantart.com/polaris-xforce/art/The-Brotherhood-of-Evil-Mutants-390550995 (used by permission)

. . . mutants from that function.  To do that, it looks closely at it to see how it can be changed.  For each tiny little way the tool sees to change it, the tool 
makes . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: https://pixabay.com/en/genetic-modification-mutant-mutation-549889/

. . . one mutant, with that one mutation.


Once our tool is done creating all the mutants it can for a given function, it iterates over . . .


https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: https://www.flickr.com/photos/39160147@N03/15074089655

. . . that list.  And now we get to the heart of the concept.

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

Mutating function whatever, at something.py:42
Test #


Mutant #
1 2 3 4 5 6 7 8 9 10 Result

1 ✔︎ ✔︎ ✔︎ ✔︎ ⏳ In Progress

2 To Do

3 To Do

4 To Do

5 To Do

For each . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

Mutating function whatever, at something.py:42
Test #


Mutant #
1 2 3 4 5 6 7 8 9 10 Result

1 ✔︎ ✔︎ ✔︎ ✔︎ ⏳ In Progress

2 To Do

3 To Do

4 To Do

5 To Do

. . . mutant, derived from . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

Mutating function whatever, at something.py:42
Test #


Mutant #
1 2 3 4 5 6 7 8 9 10 Result

1 ✔︎ ✔︎ ✔︎ ✔︎ ⏳ In Progress

2 To Do

3 To Do

4 To Do

5 To Do

. . . a given function, the tool runs the function's . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

Mutating function whatever, at something.py:42
Test #


Mutant #
1 2 3 4 5 6 7 8 9 10 Result

1 ✔︎ ✔︎ ✔︎ ✔︎ ⏳ In Progress

2 To Do

3 To Do

4 To Do

5 To Do

. . . tests, but it runs them . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

Mutating function whatever, at something.py:42
Test #


Mutant #
1 2 3 4 5 6 7 8 9 10 Result

1 ✔︎ ✔︎ ✔︎ ✔︎ ⏳ In Progress

2 To Do

3 To Do

4 To Do

5 To Do

. . . using the current mutant in place of the original function.


(PAUSE)  If any test . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

Mutating function whatever, at something.py:42
Test #


Mutant #
1 2 3 4 5 6 7 8 9 10 Result

1 ✔︎ ✔︎ ✔︎ ✔︎ ❌ In Progress

2 To Do

3 To Do

4 To Do

5 To Do

. . . fails, this is called . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: https://pixabay.com/id/illustrations/tengkorak-dan-tulang-bersilang-mawar-693484/

. . . “killing the mutant”, and it’s a . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: https://pixabay.com/vectors/turtle-tortoise-cartoon-animal-152079/

✅ X
X

. . . good thing.  It means that our code is meaningful enough that the change that the tool made, to create this mutant, made a difference in the function's 
behavior, and that at least one test noticed that difference, and failed.  Then, the tool will . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

Mutating function whatever, at something.py:42
Test #


Mutant #
1 2 3 4 5 6 7 8 9 10 Result

1 ✔︎ ✔︎ ✔︎ ✔︎ ❌ Killed

2 To Do

3 To Do

4 To Do

5 To Do

. . . mark that mutant killed, . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

Mutating function whatever, at something.py:42
Test #


Mutant #
1 2 3 4 5 6 7 8 9 10 Result

1 ✔︎ ✔︎ ✔︎ ✔︎ ❌ Killed

2 To Do

3 To Do

4 To Do

5 To Do

. . . stop running any more tests against it, and . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

Mutating function whatever, at something.py:42
Test #


Mutant #
1 2 3 4 5 6 7 8 9 10 Result

1 ✔︎ ✔︎ ✔︎ ✔︎ ❌ Killed

2 ⏳ In Progress

3 To Do

4 To Do

5 To Do

. . . move on to the next one.  Once a mutant has made one test fail, we don't care how many more it could make fail.  Like so much in computers, we only 
care about ones and zeroes.


On the other claw, if a mutant . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

Mutating function whatever, at something.py:42
Test #


Mutant #
1 2 3 4 5 6 7 8 9 10 Result

1 ✔︎ ✔︎ ✔︎ ✔︎ ❌ Killed

2 ✔︎ ✔︎ ✔︎ ✔︎ ✔︎ ✔︎ ✔︎ ✔︎ ✔︎ ✔︎ In Progress

3 To Do

4 To Do

5 To Do

. . . lets all the tests pass, then the mutant is said to have . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

Mutating function whatever, at something.py:42
Test #


Mutant #
1 2 3 4 5 6 7 8 9 10 Result

1 ✔︎ ✔︎ ✔︎ ✔︎ ❌ Killed

2 ✔︎ ✔︎ ✔︎ ✔︎ ✔︎ ✔︎ ✔︎ ✔︎ ✔︎ ✔︎ Survived!

3 To Do

4 To Do

5 To Do

. . . survived.  That means that the mutant has the . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: https://nl.wikipedia.org/wiki/Bestand:Mimic_Octopus2.jpg

. . . superpower of mimicry, skilled enough to fool our tests!  This usually means that our code is meaningless, or our tests are lax, or both — and now it’s up 
to us to figure out how.


Now let's peel back one . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: https://pixabay.com/fi/photos/avaruusolento-marsin-vihreä-hirviö-722415/

. . . layer of the onion, and look at some technical details of how this works.  First, our tool parses . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

class Conway:

  ALIVE = "*"

  DEAD  = " "


  @classmethod

  def next_state(cls, cur_state, neighbors):

    if cur_state == cls.ALIVE:

      r = cls.ALIVE if neighbors in [2,3] else cls.DEAD

    else:

      r = cls.ALIVE if neighbors == 3 else cls.DEAD

    return r


  def another_func:

    # whatever

. . . our code, so this code becomes . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

yes-

stmts

else-

stmts

CONST ALIVE CONST DEAD

IF

VAR neighbors

args

CONST [3,4]

DEF next_state

stmts

args

condition
ARG neighbors

ARG cur_state

class Conway consts

CONST DEAD

CONST ALIVE

IF

yes-

stmts

CONST 3

operandselse-

stmts

==

VAR neighbors

DEF another_func

condition

CONST ALIVE CONST DEAD

funcs

ASSIGN

val

VAR r

src

ARG cur_state

args

==

CONST ALIVE

RETURN

VAR r

dest
yes-

stmts

else-

stmts

IF

DEF some_other_func

condition
FUNC CALL in

DEF yet_another_func

. . . this Abstract Syntax Tree, or AST.  Then it . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image:  https://www.needpix.com/photo/download/667144/cat-tree-climb-young-cat-pet-nature-cat-in-the-tree-domestic-cat-in-the-free

. . . traverses the tree, looking for sub-trees, or branches if you will, that represent each function.  From each one, it makes mutants.  To make mutants from 
an AST subtree, it . . .


https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: https://pxhere.com/en/photo/1230969

. . . traverses that subtree, just like it did to the whole thing.  However, now, instead of looking for even smaller subtrees it can extract, like twigs or 
something, it’s looking for nodes where it can change something.  Each time it finds one, then for each way it can change that node, it makes one copy of the 
function's AST subtree, with that one node changed, in that one way.


Now, I've been talking a lot about changing things, so what kind of changes are we talking about?  There are quite a lot!

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

x + y
 could become: x - y

x * y

x / y

x ** y


x || y could become: x && y

x ^ y

x | y
 could become: x & y

x ^ y

Maybe even swap between sets!

It could change a mathematical, logical, or bitwise operator from one to another.

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

x - y could also become y - x


x / y could also become y / x


x ** y could also become y ** x


"x" + "y" could also become "y" + "x"

When the order of operands matters, it could swap them.

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

x < y


could become:


x <= y

x == y

x != y

x >= y

x >  y

It could change a comparison from one to another.

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

if x == y:

  foo(z)


could become:


foo(z)

 It can remove an if-condition . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

while x == y:

  foo(z)


could become:


foo(z)

. . . or a looping condition.

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

def f(x, y): # lots of code here

could become:

def f(x, y): return 0

def f(x, y): return :math.max_int

def f(x, y): return "a string"

def f(x, y): return nil

def f(x, y): return x

def f(x, y): return fail("boom")

def f(x, y): return  # nothing

etc.

It could replace a function’s entire contents with returning a constant, or any of the arguments, or raising an error, or nothing at all.

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

42

could

become:

43

41


-42

1

0


-1

42.1

41.9

math.min_int

math.max_int

math.min_float

math.max_float

math.infinity

math.epsilon

and many more

"42"

[42]

{42}

[]

()

{}

None

It could change a value to some other value, even changing it to an incompatible type, such as changing a number into a, if I may quote . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: https://www.flickr.com/photos/herval/50674160

. . . Smeagol, “string, or nothing!”


There are many more types of changes, but I trust you get the idea!


There are no more low-level details I want to add, so let’s finally walk through some examples!  We’ll start with an easy one.  Suppose we have a function . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

def power(x, y):
  x ** y

. . . like so.   Never mind why, it just makes a good simple example, so let’s roll with it.


Think about what a mutant made from this might return.  Mainly, it could return results such as . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

x + y

x - y

x * y

x / y

y ** x

x

y

0

1

-1

0.1

-0.1

math.min_int

math.max_int

math.max_float

math.min_float

math.infinity

math.epsilon

raise(DeliberateError)

"some random string"

[]

()

{}

None

and many more

. . . any of these expressions or constants, and many more but I had to stop somewhere.


Now suppose we had only one test . . .


https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

assert power(2, 2) == 4

. . . like so.  This is a rather poor test, and I think at least one reason why is clear to most of us, but even so, most of those mutants on the previous slide 
would get killed by this test, the ones shown . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

x + y

x - y

x * y

x / y

y ** x

x

y

0

1

-1

0.1

-0.1

math.min_int

math.max_int

math.max_float

math.min_float

math.infinity

math.epsilon

raise(DeliberateError)

"some random string"

[]

()

{}

None

and many more

. . . here in crossed-out green.  The ones returning constants, are very unlikely to match.  There's no particular reason a tool would put a 4 there, as opposed 
to zero, 1, -1, and other such significant numbers.  Changing the exponentiation into subtracting one argument from the other gets us zero, dividing them 
gets us one, returning either one alone gets us two, and the mismatched types and deliberate errors will at least make the test not pass.  But . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

x + y

x - y

x * y

x / y

y ** x

x

y

0

1

-1

0.1

-0.1

math.min_int

math.max_int

math.max_float

math.min_float

math.infinity

math.epsilon

raise(DeliberateError)

"some random string"

[]

()

{}

None

and many more

. . . addition, multiplication, and exponentiation in the reverse order, all get us the correct answer.  So, mutants based on these mutations will "survive" our 
test.  This is the usual way mutants survive, by . . .


https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

mutant_power(x, y)


==


original_power(x, y)

. . . returning the same result as the original function.  Or they have the same side effect — whatever our tests are looking at.  To determine how that 
happens, for a given mutant, it helps to take a closer look at it along with a test it passes.  Let's start with . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

the change:


43 -   x ** y

43 +   x + y


our test:


assert power(2, 2) == 4

. . . the "plus" mutant.  Looking at the change, together with our test, makes it clear that this one survives because . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: meme going around, original source unfindable, sorry

. . . two plus two equals two to the two.  (And so does two times two, but he's in the background, we can save him for later.)


So how can we kill . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

the change:


43 -   x ** y

43 +   x + y


our test:


assert power(2, 2) == 4

. . . this mutant, in other words, make at least one test fail when run against it, that would pass when run against the original code?  To do that, we need to 
make at least one test use inputs such that x plus y is different from x to the y.  For instance, we could add a test or change our existing test to . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

assert power(2, 4) == 16

. . . assert that two to the fourth power is sixteen.  All the mutants that our original test killed, this would still kill.  But also, two plus four is six, not sixteen, so 
this kills the plus mutant.  See how that works?


Better yet, two times four is eight, which is also not sixteen!  So, this kills the "times" mutant as well.  Killing one mutant often kills many other mutants of the 
same function.


But . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: https://pixabay.com/vectors/teenage-mutant-ninja-turtles-turtle-151715/

. . . the pair of argument-swapping mutants survive, because . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

4 ** 2 == 16


2 ** 4 == 16

. . . four squared and two to the fourth, are both sixteen.  But we can . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: https://publicdomainvectors.org/en/free-clipart/Superhero-in-red-uniform/45131.html and prior

. . . attack these mutants separately, no need to kill them all in one shot and be some kind of superhero about it.  To kill them, again, we can either add a test, 
or adjust an existing test, to . . .

https://twitter.com/davearonson
http://Codosaur.us
https://publicdomainvectors.org/en/free-clipart/Superhero-in-red-uniform/45131.html


@davearonsonCodosaur.us

assert power(2, 3) == 8

. . . assert that two to the third power is eight.  Three squared is nine, not eight, so this kills the argument-swapping mutants.  Better yet, two plus three is 
five, two times three is six, and both of those are not eight, so the "plus" and "times" mutants stay dead, even if this were still our one and only test.  
(PAUSE!)  With these inputs, the correct operation is the only simple common one that yields the correct answer.  This isn't the only solution, though; there 
are lots of ways to skin . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: https://www.flickr.com/photos/greyloch/48214242842

. . . that flerken!


This may make mutation testing sound simple, but this was a downright trivial example.  So let’s look at a more complex one!


Suppose we have a function to send a message, . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

  def send_message(buf, len):

    sent = 0

    while sent < len:

      sent += send_bytes(buf + sent,

                         len - sent)

    return sent

. . . like so.  send_message, uses send_bytes to send as many bytes as send_bytes could send, like a woodchuck, looping to pick up where it left off, until 
the message is all sent.


A mutation testing tool could make lots of mutants from this, but one of particular interest, would be . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

  def send_message(buf, len):

    sent = 0

    while sent < len:

      sent += send_bytes(buf + sent,

                         len - sent)

    return sent

. . . this, an example of removing a looping control.


Now suppose that this mutant does indeed survive our test suite, which consists mainly of . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

assert send_message(msg, size) == size

. . . this.  (PAUSE!)  There's a bit more that I'm not going to show you quite yet, dealing with setting the size and actually creating the message.  But even 
without seeing that test code, what does the survival of that non-looping mutant tell us?  (PAUSE!)


If a mutant that only goes through . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

  def send_message(buf, len):

    sent = 0

    while sent < len:

      sent += send_bytes(buf + sent,

                         len - sent)

    return sent

. . . that loop once, acts the same as our normal code, as far as our tests can tell, that means that our tests are only making our normal code go through that 
loop once.  So, what does that mean?  (PAUSE!)  You'll find that interpreting mutants often involves a lot of asking yourself “so, what does that mean", often 
deeply recursively!


In this case, it means that we’re not testing sending a message larger than send_bytes can handle in one chunk!  There are many ways that can happen, but 
we’re only going to look at two possibilities.  The most likely is that we simply forgot, or didn’t bother, to test with a big enough message.  For instance, . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

in module Network:


max_chunk_size = 10_000


in test_send_message:


msg = "foo"

size = length(msg)

# other setup, like stubbing send_bytes

assert send_message(msg, size) == size

. . . suppose our maximum chunk size, what send_bytes can handle in one chunk, is 10,000 bytes.  But . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

in module Network:


max_chunk_size = 10_000


in test_send_message:


msg = "foo"

size = length(msg)

# other setup, like stubbing send_bytes

assert send_message(msg, size) == size

. . . we’re only testing with a three byte message.  (PAUSE!)


The obvious fix is to deliberately use a message larger than our maximum chunk size.  We can easily construct one . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

in module Network:


max_chunk_size = 10_000


in test_send_message:


size = socket.max_chunk_size + 1

msg = "x" * size

# other setup, like stubbing send_bytes

assert send_message(msg, size) == size

. . . like so.


But now let’s look at another possible cause and solution.  Maybe we did test with the largest permissible message, out of a set of predefined messages, or 
message sizes.  For instance, . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

in module Message:


SmallMsgSize = 1_000

LargeMsgSize = 5_000  # the largest


in test_send_message:


size = Message.LargeMsgSize

msg = Message.make_msg("a" * size)

# other setup, like stubbing send_bytes

assert send_message(msg, size) == size

. . . here we have Small and Large message sizes, we test with a Large, and yet, this mutant survives!  In other words, we're still sending the whole message 
in one chunk.  What could possibly be wrong with that?  It sounds like a good thing to me!  What is this mutant trying to tell us in this case?  (PAUSE!)


In this scenario, it’s trying to tell us that a version of send_message with the looping removed will do the job just fine.  If we remove the looping, we wind up 
with . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

def send_message(buf, len):

  sent = 0

  sent += send_bytes(buf + sent,

                     len - sent)

  return sent

. . . this, and if we run our mutation testing tool on this, it will show some other stuff as now being redundant, because we only needed it to support the 
looping.  If we also remove that, then it boils down to . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

def send_message(buf, len):

  return send_bytes(buf, len)

. . . this.  (PAUSE!)  Now the message is clear: the entire send_message function may well be redundant, so we can just use send_bytes directly!  In real-
world code, though, it might not be, because there may be some logging, error handling, and so on, needed in send_message, but at the very least, the 
looping was redundant.  Fortunately, when it's this kind of problem, the usual solution is clear and easy, just rip out the extra junk that the mutant doesn't 
have.  This will also make our code more maintainable, by getting rid of useless cruft that just gets in the way of understanding it.


Now that we’ve seen examples of finding both bad tests and redundant code, I’ll address a couple of . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

? ? ?
. . . Frequently Asked Questions.  First, this all sounds pretty weird, deliberately making tests fail, to prove that the code succeeds!  Where did this whole . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: https://commons.wikimedia.org/wiki/File:New_York_Comic_Con_2015_-_Bizarro_%2821931796858%29.jpg

. . . bizarro idea come from?  Mutation testing has a surprisingly . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us Image: https://www.worldhistory.org/image/8664/lascaux-ii-cave-today/

. . . long history -- at least in the context of computers.  It was first proposed in 1971, in Richard Lipton's term paper “Fault Diagnosis of Computer 
Programs”, at Carnegie-Mellon University.  The first tool didn't appear until 1980, in Timothy Budd's PhD work at Yale.  But it was not practical on 
typical computers, until the early 2000s, with significant advances in CPU speed, multi-core CPUs, larger and cheaper memory, and so on.  But now, 
it’s practical even on fairly low-end modern systems, like this 2020 MacBook Air.


Another common question is: where should we fit this into . . .


https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

- Claim Ticket and Make Branch

- Write Tests

- Write Code

- Lint?

- Refactor?

- Create Pull Request

- Get PR Approved

- Merge PR and Delete Branch

- Go Back, Jack, Do It Again

. . . our development process?  Mainly, I think it belongs at least . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

- Claim Ticket and Make Branch

- Write Tests

- Write Code

- Lint?

- Refactor?

- Create Pull Request

- Get PR Approved

- Merge PR and Delete Branch

- Go Back, Jack, Do It Again

. . . here, as part of the requirements for a Pull Request (or whatever your process uses) to be approved.  You can set some standards for what you’re willing 
to tolerate, on the changed code, or the whole codebase, or both, such as two surviving mutant per new file, and no increase of them in others, or the whole 
codebase.  Ideally this would be automated, as part of a CI pipeline, that would be started when the PR is created, and block it if the criteria are not met.  
That said, I personally would also do it in my own work as part of . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

- Claim Ticket and Make Branch

- Write Tests

- Write Code

- Lint?

- Refactor?

- Create Pull Request

- Get PR Approved

- Merge PR and Delete Branch

- Go Back, Jack, Do It Again

. . . the Linting step, where I would apply all sorts of other quality checking tools.


If you'd like to try mutation testing for yourself . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

Alloy: MuAlloy
Android: mdroid+
C: mutate.py, SRCIROR
C/C++: accmut, dextool, MART, MuCPP, Mutate++, mutate_cpp, SRCIROR
C#/.NET/Mono: nester, NinjaTurtles, Stryker.NET, Testura.Mutation, VisualMutator
Clojure: mutant
Crystal: crytic
Dart: mutation_test
Elixir: darwin, exavier, exmen, mutation, Muzak [Pro]
Erlang: mu2
Etherium: vertigo
FORTRAN-77: Mothra (written in mid 1980s!)
Go: go-mutesting, gremlins, ooze
Haskell: fitspec, muCheck
Java: jumble, major, metamutator, muJava, pit/pitest, and many more
JavaScript: stryker, grunt-mutation-testing
Pharo: MUTALK
PHP: infection, humbug
PL/SQL: MuPLSQL

Python: cosmic-ray, mutmut, mutpy, pester, xmutant
Ruby: mutant, mutest, heckle
Rust: mutagen
Scala: scalamu, stryker4s
Smalltalk: mutalk
Solidity: RegularMutator
SQL: SQLMutation
Swift: muter
Anything on LLVM: llvm-mutate, mull
Tool to make more: Wodel-Test (https://gomezabajo.github.io/Wodel/Wodel-Test/)

. . . here is a list of tools for some popular languages and platforms, including of course Python . . . and some other languages; I doubt many of you are doing 
FORTRAN-77 these days.  Don’t worry about pictures, the last slide has the URL for the whole deck.  The tools I know are outdated, are crossed out.


To summarize at last, mutation testing is a powerful technique to . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

😀 Checks that code is meaningful

. . . help ensure that our code is meaningful and . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

😀 Checks that code is meaningful
😀 Checks that tests are strict

. . . our tests are strict.  It's . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

😀 Checks that code is meaningful
😀 Checks that tests are strict
😀 Easy to get started with

easy to get started with, but it's . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

😀 Checks that code is meaningful
😀 Checks that tests are strict
😀 Easy to get started with
😩 Difficult to interpret results

. . . not so easy to interpret the results, nor is it . . .


https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

😀 Checks that code is meaningful
😀 Checks that tests are strict
😀 Easy to get started with
😩 Difficult to interpret results
😩 Hard labor on the CPU

. . . easy on the CPU.


Even if these drawbacks mean it might not be a good fit for our current projects, I still think it's just . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

😀 Checks that code is meaningful
😀 Checks that tests are strict
😀 Easy to get started with
😩 Difficult to interpret results
😩 Hard labor on the CPU
😎 Fascinating concept! 🤓

. . . a really cool idea . . . in a geeky kind of way.


If you have any questions, . . .

https://twitter.com/davearonson
http://Codosaur.us


@davearonsonCodosaur.us

T.Rex-2024@Codosaur.us

twitter.com/DaveAronson


linkedin.com/in/DaveAronson


Slides and FULL SCRIPT:

Codosaur.us/reds/mutants-pycon-lt-24-slides

. . . there’s my contact info, plus, as promised, the URL for the slides, complete with a full script, which I’ve mostly stuck to.

https://twitter.com/davearonson
http://Codosaur.us

