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Hello, Salt Lake City! I'm Dave Aronson, the T. Rex of Codosaurus, and | flew over here on my pet pterodactyl to teach you to kill mutants! (PAUSE!) So,
whaton . ..
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. . . Infinite Earths, makes . . .
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.. . mutation testing different from all the other software testing techniques? The main difference is that most others are about . . .
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. . . checking whether our code is correct. But mutation testing . . .
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.. . assumes that our code is correct, at least in the sense of passing its tests. Instead, mutation testing checks for two other qualities. In a typical
codebase, | think the more important one is that our test suite is . . .
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"use strict";
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... Strict. Now you may be thinking, “Isn’t that what test coverage is for?”
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The only thing that test coverage tells us is that at least one test ran . . .
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class Conway:
ALIVE = "*"
DEAD = "

Rclassmethod
def next state(cls, cur state, neighbors):

== 3 else cls.DEAD

def another func:
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... the code it claims is “covered”, and none ran the rest of it. It tells us NOTHING about whether the correctness of the code made any difference to
whether a test passed or failed — and isn’t that what we really mean by “tested”?

This is where mutation testing comes in. To check that our test suite is strict, a mutation testing tool will try to . . .
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... find the gaps in our test suite, that let our code get away with unwanted behavior. Once we find gaps, we can close them by either adding tests or
improving existing tests. Lack of stricthess comes mainly from /lack of tests, or poorly written tests.

The other thing mutation testing checks is that our code is . . .
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. . . meaningful, so that any semantic change to the code, will produce a noticeable change in its behavior. Lack of meaning comes mainly from code being
unreachable, redundant, or otherwise just not having any real effect. Once we find "meaningless" code, we can figure out why it's meaningless, then make it
meaningful, if that fits our intent, but the usual fix is just to remove it.

Mutation testing . . .
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. . . puts these two together, by checking that every change to the code, that the tool knows how to do, does indeed make a noticeable change to its
behavior, and that the test suite is indeed strict enough that at least one test will notice that change, and fail.

That's the positive side, but there are some drawbacks. As . ..
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Software Engineering”
* (1986 paper)
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.. . Fred Brooks told us back in 1986, there's no . . .
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... silver bullet! Besides, those are for killing . . .
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.. . werewolves, not mutants!

The first drawback is that it's rather . . .
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... hard labor for the CPU, and therefore usually ra-ther sloooow. We certainly won’t want to mutation-test our whole codebase on every save! Maybe over
a lunch break for a smallish system, or a weekend for a large one. Fortunately, most tools let us just check specific functions, classes, files, and so on. Also,
they usually include some kind of . . .
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.. . incremental mode, so that we can test only the changes since the last mutation test, or the last git commit, or the main branch, or some such difference.
With such filtering, maybe we can test the changes on each save, or at least over a much shorter break.

Another drawback is that it's often . . .
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... hot at all clear what to do about the results! It tells us that some particular change to the code made no difference to the test results, but what does that
even mean? It takes a lot of interpretation to figure out what a mutant is trying to tell us. Their accent is verrah strayinge, and they’re almost as incoherent
as...
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.. . zombies, but with a much bigger vocabulary, so they’re not always on about braaaaaaains. They're usually trying to tell us that our code is meaningless,
or our tests are lax, or both, but it can be very hard to figure out exactly how! Even worse, sometimes it'sa. ..
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.. . false alarm, because the mutation didn't make a test fail, but it didn't make any difference in the first place. It can still take quite a lot of time and effort to
figure that out.

And even if a mutation does make a difference, most programs have quite a lot of code that we just .. . .
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. . . Shouldn't bother to test, like debugging traces! Fortunately, most tools have ways to tell them "don't bother mutating this line", or even this whole
function, class, file, or whatever . . . but that's usually with comments, which can clutter up the code, and make it less readable.

Now that we've seen the pros and cons, how does mutation testing work, unlike this guy? It. ..
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. mutates copies of our code, hence the name. It does this to create test failures, also called . . .
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... faults. So, mutation testing is a fault-based testing technique. This means it is related to something you might already be familiar with:
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.. . Chaos Monkey, from Netflix. Just like Chaos Monkey uses faults to help Netflix discover flaws in their error recovery, mutation testing uses faults to help
us discover certain flaws in our tests and our code. But the way mutation testing does it, is sort of . . .
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.. . upside down from what Chaos Monkey does. Chaos Monkey is best known for . . .
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. . . injecting faults into Netflix's production network.
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If all still goes well, in the sense that Netflix's customers don't notice, and their metrics still look good, then Netflix knows that their error recovery is working
fine. Mutation testing, however, injects semantic . . .
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.. . changes, not necessarily problems. We hope all these changes will create faults, but that depends on the test suite. It injects theminto . ..
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. . . copies of our code, not our actual network. It does its work in our . . .
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... test environment, not production. (Whew!) And if everything still goes well, in the sense that . . .
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$ mutation test

280 tests, 420 assertions, 4,987 mutants,
0O failures, 0 errors, 0 excluded
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. .. our tests all still pass, that doesn't mean that all is well, that means that . . .
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$ mutation tr

280 tests, () assertions, / mutants,
0 failures, € Wxrors, 0 exgl ded

Codosaur.us @davearonson

... there is a problem! Remember, each change to our code should make at least one test fail.

But enough about differences. How does mutation testing work? Let's start with . . .
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. . . a high-level view. First, our chosen tool . ..
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.. . breaks our code apart into pieces to test. Usually, these are our functions -- or methods if we're using objects, but I'm just going to say functions. Then,
for each function, it finds . . .
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. . . the tests that cover that function. After find a function’s tests, the tool . . .
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. . . makes the mutants from that function. To do that, it looks closely at it to see how it can be changed. For each tiny little way the tool sees to change it,
the tool makes . . .
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.. . one mutant, with that one mutation.

Once our tool is done creating all the mutants it can for a given function, it iterates over . . .


https://twitter.com/davearonson
http://Codosaur.us

4

ST

Ages 4 and up

CERMAGE MUTANT NINA

Codosaur.us Image: https://www.flickr.com/photos/39160147@N03/15074089655 @davearonson

... that list. And now we get to the heart of the concept.
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This chart represent the progress of our tool. The tools generally don't give us quite all this information, let alone so neatly organized, but it's a conceptual
model | use to help illustrate the point.

For each . ..
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_Mutating functlon whatever at something.py:42
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To Do
To Do

... mutant, derived from . . .


https://twitter.com/davearonson
http://Codosaur.us

Mutatirie function whatever, at something.py:42

2.l a4 [ 10
Test# 1 | 2 51 67819 Result

ot vivivlv ] [ ] || |inProgress

2 | P[] T
3 ] Tebo
I I I A A I Y-
HEEEEEEEEEET

@davearonson

.. . a given function, the tool runs the function's . . .
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... tests, but it runs them . ..
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Mutating function whatever, at something.py:42

... using the current mutant in place of the original function.

(PAUSE) If any test. ..
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Mutating function whatever, at something.py:42
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... fails, this is called . . .


https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://pixabay.com/id/illustrations/tengkorak-dan-tulang-bersilang-mawar-693484/ @davearonson

... “killing the mutant”, anditsa. ..
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... good thing. It means that our code is meaningful enough that the change that the tool made, to create this mutant, made a noticeable difference in the
function's behavior, and that at least one test noticed that difference, and failed. Then, the tool will . . .
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.. . mark that mutant killed, . . .
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Mutating function whatever, at something.py:42

. . . stop running any more tests against it, and . . .
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. move on to the next one. Once a mutant has made one test fail, we don't care how many more it could make fail, like perhaps some of . . .


https://twitter.com/davearonson
http://Codosaur.us

Mutating function whatever, at something.py:42

.. . those blank cells. Like so much in computers, we only care about ones and zeroes.

On the other claw, if a mutant . . .
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. . . lets all the tests pass, then the mutant is said to have . . .
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Mutating function whatever, at something.py:42
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... survived. That means that the mutant has the . . .
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.. . superpower of mimicry, skilled enough to fool our tests! This usually means that our code is meaningless, or our tests are lax, or both — and now it's up
to us to figure out how.

Now let's peel back one . . .
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... layer of the onion, and look at some technical details of how this works. First, our tool parses . . .
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class Conway:
ALIVE = "*"
DEAD = " "

@classmethod
def next state(cls, cur state, neighbors):
if cur_state == cls.ALIVE:

r = cls.ALIVE if neighbors in [2,3] else cls.DEAD
else:

r = cls.ALIVE if neighbors == 3 else cls.DEAD
return r

def another func:
# whatever

Codosaur.us @davearonson

... our code, usually into an Abstract Syntax Tree. So, this code becomes . . .
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... this AST (don’t worry about reading it). Theniit. ..
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.. . traverses the tree, looking for sub-trees, or branches if you will, that represent each function. After finding them, it handles each one as | described
before, starting with looking for each one's tests . . . so how does it do that? That usually relies mainly on us developers, either . . .
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@mumu tests-for foo

def teST ITOO turns 3 1nto 6:
foo(3) .must equal ©

end

def test foo turns 4 into 10:
foo(4) .must equal 10
end
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.. . annotating our tests, or following some kind of . . .
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def test{ foo rurns 3 into 6:
foo(3) .must equal ©
end

def test{ foo rurns 4 into 10:
foo(4) .must equal 10
end
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. . . haming convention. These manual techniques are often supplemented and sometimes even replaced by . . .
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def test foo turns 3 into 6:
foo)3) .must equal ©
end

def test foo turns 4 into 10:
fooj4) .must equal 10
end
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... the tool looking at what tests call what functions, though that can get tricky and unreliable. Anyway, after the tool has found the function's tests, it makes
the mutants. To make mutants from an AST subtree, it . . .
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.. . traverses that subtree, just like it did to the whole thing. However, now, instead of looking for even smaller subtrees it can extract, like twigs or
something, it’s looking for nodes where it can change something. Each time it finds one, then for each way it can change that node, it makes one copy of the
function's AST subtree, with that one node changed, in that one way. For instance, suppose our tool has started traversing . . .
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... the function subtree from that AST | showed earlier, and has gotten down to . . .
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... this if statement. For each way the tool could change that node, it would make a fresh copy, of this whole subtree, with only that one node changed, in
that one way. After it's done making as many mutants as it can by mutating that node, it would continue traversing the subtree, to . . .
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args stmts
VAR neighbors CONST [3,4] CONSTALIVE CONST DEAD
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... the next node. Again, for each way it could change that node, it would make a copy of this whole subtree, with only that mutation. And so on, until it
has . ..
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.. . traversed the entire subtree.

Now, I've been talking a lot about changing things, so what kind of changes are we talking about? There are quite a lot!
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x || y could become:

x | v could become:
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It could change a mathematical, logical, or bitwise operator from one to another,
even across categories when the language allows.
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x - y could also become y - x
x / y could also become y / x

x ** y could also become y ** x

"x" <> "y" could also become "y" <> "x"
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When the order of operands matters, it could swap them.
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X <y

could become:
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It could change a comparison from one to another.
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X

could become:

-X
Ix
~X

. . . orvice-versal
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It could insert or remove a mathematical, logical, or bitwise negation.
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a foo (x)
b bar (y)

could become:

a foo (x)

or

bar (y)
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It can remove an entire statement.
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if x == y:
foo(z)

could become:
foo(z)
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It can remove an if-condition . . .
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while x == y:
foo(z)

could become:

foo (z)
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. .. or a looping condition.
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"42" .min int
[42] .max int
42 {42} .min_float

could [] .max_float

become: () . :|.nf1n:|.ty
42 1 éine .epsilon
41.9
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It could change a value to some other value, such as changing 42 to any of these, and many more but | had to stop somewhere. It could even change it to
something of a different and possibly incompatible type, such as changing a number into a, if | may quote . . .
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.. . Smeagol, “string, or nothing!”
There are many many more types of changes, but | trust you get the idea!

From here on, there are no more low-level details | want to add, so let’s finally walk through some examples! We'll start with an easy one. Suppose we have
a function . . .
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def power (x, vy):

X ** y
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... like so. Never mind why, it makes a good simple example, so let’s just roll with it.
Think about what a mutant made from this might return, since that's what our tests would probably be looking at. It sure doesn’t look like it has side effects.

Mainly, such a mutant could return results such as . . .
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math.max
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math.min:
math.infinity
math.epsilon

raise (DeliberateError)
"some random string"

math.min_int
math.max

int
float
float

@davearonson

... any of these expressions or constants, and, again, many more but | had to stop somewhere.

Now suppose we had only one test . . .
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assert power (2, 2)
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... like so. This is a rather poor test, and | think at least one reason why is immediately obvious to most of us, but even so, most of those mutants on the
previous slide would get killed by this test, the ones shown . . .
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math-min—3Int
b
e
e
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T = S
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3
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Codosaur.us @davearonson

... here in crossed-out green. The ones returning constants, are very unlikely to match. There's no particular reason a tool would put a 4 there, as opposed
to zero, 1, -1, minimum and maximum signed and unsigned integers and floats, infinity, minus infinity, and other such significant numbers. Subtracting one
argument from the other gets us zero, dividing them gets us one, returning either argument alone gets us two, and the mismatched types and deliberate
errors will at least make the test not pass. But. ..
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Codosaur.us @davearonson

. . . addition, multiplication, and exponentiation in the reverse order, all get us the correct answer. Mutants based on these mutations will therefore "surivive”
our test.

So how do we see that happening? When we run our tool, it gives us a report, that looks roughly like . . .
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function "power" (demo.py:42)
has 4 surviving mutants:

42 def power (x, y):
42 def power (y, x):

43 ** y
43 + y

43 ** v
43 + * y

43 **k y
43 + **x x

Codosaur.us @davearonson

... this. The format will vary greatly depending on exactly which tool we use, but semantically, the information should be the same. And that is that if we
changed . ..
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function "power" J(demo.py:42)
haowl . surzizandnly mutants:

42 def power (x, y):
42 def power (y, x):

43 ** y
43 + y

43 ** y
43 * y

43 **k y
43 **x x

Codosaur.us @davearonson

. . . the function called power, in . . .
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function "power'l (demo.py:42)
has 4 surviving matants:

42 def power (x, y):
42 def power (y, x):

43 ** y
43 + y

43 ** y
43 * y

43 **k y
43 **x x

Codosaur.us @davearonson

... file demo.py, atline 42 . . .
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furatdC™ powel ™ (Cemg, Dy : 42)
has 4 surviving mutants:

42 def power (x, y):
42 def power (y, x):

43 ** y
43 + y

43 ** y
43 * y

43 **k y
43 **x x

Codosaur.us @davearonson

... in any of four ways, then all its tests still pass.

And, that those ways are: . . .
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function "power" (demo.py:42)
has 4 surviving mutants:

42 def power (x, y).
42 def power (y, x)_

43 ** y
43 + y

43 ** y
43 * y

43 **k y
43 **x x

Codosaur.us @davearonson

... to change the function declaration to swap the arguments, or . . .
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function "power" (demo.py:42)
has 4 surviving mutants:

42 def power (x, y):
42 def power (y, x):

43 ** y
43 + y

43 ** v
43 + * y

43 **k y
43 + **x x

Codosaur.us @davearonson

.. . change the function body to change the exponentiation into addition or multiplication, or . . .
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function "power" (demo.py:42)
has 4 surviving mutants:

42 def power (x, y):
42 def power (y, x):

43 ** y
43 + y

43 ** v
43 + * y

43 **k y
43 + **x x

Codosaur.us @davearonson

.. . to change the body to swap the exponentiation’s operands.

Sowhatis ...
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function "power" (demo.py:42)
has 4 surviving mutants:

42 def power (x, y):
42 def power (y, x):

43 ** y
43 + y

43 ** v
43 + * y

43 **k y
43 + **x x

Codosaur.us @davearonson

... this set of surviving mutants trying to tell us? We can tell from a glance at . . .
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def power (x, vy):

X ** y

Codosaur.us @davearonson

... our code, that it's probably not trying to tell us about redundant or unreachable code. The body is just one line so that sort of problem is extremely
unlikely. So it's probably a test gap! The question now boils down to, how are . . .
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function "power" (demo.py:42)
has 4 surviving mutants:

42 def power (x, y):
42 def power (y, x):

43 ** y
43 + y

43 ** y
43 * y

43 **k y
43 **x x

Codosaur.us @davearonson

.. . these mutants surviving? The usual answer is that . . .
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mutant power (x, y)

original power (x, y)

Codosaur.us @davearonson

... they return the same result as the original function. Or they have the same side effect — whatever our tests are looking at. To determine how that
happens, it helps to take a closer look at one mutant, and a test it passes. Let's start with . . .
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the change:

43 - X **x y
43 + X +y

our test:

assert power (2, 2) == 4

Codosaur.us

@davearonson

... the "plus" mutant. Looking at the change, together with our test, makes it clear that this one survives because . . .
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Codosaur.us Image: meme going around, original source unfindable, sorry @davearonson

.. . two plus two equals two fo the two. (And so does two times two, but he's in the background, we can save him for later.)

So how can we Kkill . . .
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the change:

43 - X ** y
43 + X +y

our test:

assert power (2, 2) == 4

Codosaur.us @davearonson

... this mutant, in other words, make at least one test fail when run against it, that would pass when run against the original code? We just need to make at
least one test use inputs such that x plus y is different from x to the y. For instance, we could add a test or change our existing testto . . .
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assert power (2, 4)

Codosaur.us @davearonson

.. . assert that two to the fourth power is sixteen. All the mutants that our original test killed, this would still kill. But in addition, two plus four is six, not
sixteen, so this Kills the plus mutant. (See how that works?)

Better yet, two times four is eight, which is also not sixteen! So, this kills the "times" mutant as well. Killing one mutant often kills many other mutants of the
same function.

But. ..
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Codosaur.us Image: https://pixabay.com/vectors/teenage-mutant-ninja-turtles-turtle-151715/ @davearonson

.. . the pair of argument-swapping mutants survive! What, how can that be? It's because . ..
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4 *x 2 16

2 **x 4 16

Codosaur.us @davearonson

... four squared is the same as two to the fourth, they’re both sixteen. But that’s not a big deal, we can . . .
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Codosaur.us Image: https://publicdomainvectors.org/en/free-clipart/Superhero-in-red-uniform/45131.html and prior @davearonson

. . . attack these mutants separately, no need to kill all the mutants in one shot and be some kind of superhero about it. To kill them, again, we can either add
a test, or adjust an existing test, to something like . . .
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https://publicdomainvectors.org/en/free-clipart/Superhero-in-red-uniform/45131.html

assert power (2, 3)

Codosaur.us @davearonson

... this, asserting that two to the third power is eight. Three squared is nine, not eight, so this Kills the argument-swapping mutants. Better yet, two plus
three is five, two times three is six, and both of those are not eight, so the "plus" and "times" mutants stay dead, and we don't getany . ..
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Codosaur.us Image: https://pixabay.com/vectors/zombie-undead-monster-living-dead-156138/ (modified by me) @davearonson

. . . zombie mutants wandering around, even if . . .
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assert power (2, 3)

Codosaur.us @davearonson

.. . this were still our one and only test. (PAUSE!) With these inputs, the correct operation is the only simple common one that yields the correct answer.
This isn't the only solution, though; even if we stuck to single digits, there are lots of ways to skin . . .
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Codosaur.us Image: https://www.flickr.com/photos/greyloch/48214242842 @davearonson

. . . that flerken!

This may make mutation testing sound . . .
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SIMPLE SIMON

Codosaur.us Image: https://commons.wikimedia.org/wiki/File:Simple_Simon_LCCN2003677693.jpg @davearonson

. . . simple, but this was a downright trivial example.
So let’s look at a more complex example!

Suppose we have a function to send a message, . . .
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def send message (buf, len):
sent = 0
while sent < len:

sent += send bytes (buf + sent,
len - sent)

return sent

Codosaur.us @davearonson

... like so. This function, send_message, uses send_bytes to send as many bytes as send_bytes could send, like a woodchuck, looping to pick up where it
left off, until the message is all sent. This is a very common pattern in communication software.

A mutation testing tool could make lots of mutants from this, but one of particular interest, would be . . .
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def send message (buf, len):
sent =
—h e —sent < Jent

sent += send bytes (buf + sent,
len - sent)

return sent

Codosaur.us @davearonson

... this, an example of removing a looping control.

That would make the code read effectively like . . .
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def send message (buf, len):
sent = 0

sent += send bytes(buf + sent,
len - sent)

return sent

Codosaur.us @davearonson

... this.

Now suppose that this mutant does indeed survive our test suite, which consists mainly of . . .


https://twitter.com/davearonson
http://Codosaur.us

assert send message (msg, size) == size

Codosaur.us @davearonson

... this. (PAUSE!) There's a bit more that I'm not going to show you quite yet, dealing with setting the size and actually creating the message. But even
without seeing that test code, what does the survival of that non-looping mutant tell us? (PAUSE!)

If a mutant that only goes through . . .
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def send message (buf, len):
sent = 0
while sent < len:

sent += send bytes (buf + sent,
len - sent)

return sent

Codosaur.us @davearonson

... that loop once, acts the same as our normal code, as far as our tests can tell, that means that our tests are only making our normal code go through that
loop once. So, what does that mean? (PAUSE!) By the way, you'll find that interpreting mutants involves a lot of asking yourself “so, what does that mean”,
often deeply recursively!

In this case, it means that we're not testing sending a message larger than send_bytes can handle in one chunk! There are many ways that can happen, but
we’re only going to look at two possibilities. The most likely is that we should have, but simply forgot, or didn’t bother, to test with a big enough message.
For instance, . . .
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in modulablatasnle

max chunk size = 10 000

in test_send_message:

msg = "foo"

size = length (msqg)

# other setup, like stubbing send bytes
assert send message (msg, size) == size

Codosaur.us @davearonson

. . . Suppose our maximum chunk size, what send_bytes can handle in one chunk, is 10,000 bytes. But. ..
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in module Network:

max chunk size = 10 000

in_test=send _message:

msg = "foo"

STECn=.lorngth (msqg)

# other setup, like stubbing send bytes
assert send message (msg, size) == size

Codosaur.us @davearonson

.. . we’re only testing with an itty-bitty three byte message. (PAUSE!)

The obvious fix is to deliberately use a message larger than our maximum chunk size. With this kind of message, we can easily construct one, as shown . . .
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in module Network:

max chunk size = 10_000

in test.sema=riessage:

size = socket.max chunk size + 1

msg = "x" * size

# OClrexw.setup, like stubbins=s€nd bytes
assert send message (msg, size) == size

Codosaur.us @davearonson

... here. (PAUSE!) We just take the maximum size, add some, and construct that big a message.

But now let’s look at another possible cause and solution. Maybe we did test with the largest permissible message, out of a set of predefined messages, or
at least message sizes. For instance, . ..
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in module Message:

SmallMsgSize = 1 000
LargeMsgSize = 5 000 # the largest

in test_send_message:

size = Message.LargeMsgSize

msg = Message.make msg("a" * size)

# other setup, like stubbing send bytes
assert send message (msg, size) == size

Codosaur.us @davearonson

.. . here we have Small and Large message sizes, we test with a Large, and yet, this mutant survives! In other words, we're still sending the whole message
in one chunk. What could possibly be wrong with that? It sounds like a good thing to me! What is this mutant trying to tell us in this case? (PAUSE!)

In this scenario, it’s trying to tell us that a version of send_message with the looping removed will do the job just fine. If we remove the looping, we wind up
with . . .
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def send message (buf, 1len):
sent = 0

sent += send bytes (buf + sent,
len - sent)

return sent

Codosaur.us @davearonson

... this code | showed you earlier. If we run our mutation testing tool on this, it will show some other stuff as now being redundant, because we only needed
it to support the looping. If we also remove that, then it boils down to . . .
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def send message (buf, len):

return send bytes (buf + sent,
len - sent)

Codosaur.us @davearonson

... this. (PAUSE!) Now the message is clear: the entire send_message function may well be redundant, so we can just use send_bytes directly! In real-
world code, though, it might not be, because there may be some logging, error handling, and so on, needed in send_message, but at the very least, the
looping was redundant. Fortunately, when it's this kind of problem, the usual solution is clear and easy, just rip out the extra junk that the mutant doesn't
have. This will also make our code more maintainable, by getting rid of useless cruft that just gets in the way of understanding it.

Now that we've seen a few different examples, of spotting bad tests and redundant code, I'd like to address some . . .
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227

Codosaur.us @davearonson

... common questions. First, this all sounds pretty weird, deliberately making tests fail, to prove that the code succeeds! Where did this whole bizarro idea
come from anyway? Mutation testing has a surprisingly . . .


https://twitter.com/davearonson
http://Codosaur.us

R S\Eronaglys . e T W T
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.. . long history -- at least in the context of computers. It was first proposed in 1971, in Richard Lipton's term paper titled “Fault Diagnosis of Computer
Programs”, at Carnegie-Mellon University. The first fool didn't appear until nine years later, in 1980, as part of Timothy Budd's PhD work at Yale. Even
then, it was not practical on typical developer-grade computers, until the early 2000s, with advances in CPU speed, multi-core CPUs, larger and

cheaper memory, and so on.

That leads us to the next question: why is it so CPU- and memory-intensive? To answer that, we need do some math, but don't worry, it's pretty basic.
Suppose our functions have, on average, . . .
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10 lines

Codosaur.us @davearonson

.. . about ten lines each. And each line has about . ..
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10 lines
5 mutation points

Codosaur.us @davearonson

... five places where it can be mutated, to any of about . . .
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10 lines
) ¢ 5 mutation points
x 20 alternatives

. . . twenty alternatives. That works out to about . . .
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10 lines
) ¢ 5 mutation points
x 20 alternatives

‘= 1000 mutants/function!

Codosaur.us @davearonson

.. . a thousand mutants for each function! And for each one, we'll have to run somewhere between one test, if we're lucky and kill it on the first try, all the
way up to all of that function's tests, if we Kill it on the last try, or worse yet, it survives.

Suppose we wind up running just . . .
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10 lines
5 mutation points
20 alternatives
= 1000 mutants/function!
X 20 % of the tests, each

X
X

. . . one fifth of the tests for each mutant. Since we start with a thousand mutants, that's still . . .
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10 lines
5 mutation points
20 alternatives

1000 mutants/function!
X 20 % of the tests, each
= 200 x as many test runs!

Codosaur.us @davearonson

.. . two hundred times the test runs for that function, compared to regular testing. If our test suite normally takes a zippy ten seconds, then with these
assumptions, mutation testing will take about two thousand seconds. That might not sound like much, because I’'m saying “seconds”, but it's over half an
hour! 1 don’t want to sit and wait for that! So remember to use the filtering | spoke of at the start.

To summarize at last, mutation testing is a powerful technique to . . .
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@® Checks that code is meaningful

Codosaur.us @davearonson

... help ensure that our code is meaningful and . . .
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@® Checks that code is meaningful
@® Checks that tests are strict

Codosaur.us @davearonson

.. .our tests are strict. It's. ..
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@® Checks that code is meaningful
@® Checks that tests are strict
@® Easy to get started with

Codosaur.us @davearonson

easy to get started with, in terms of setting up most of the tools and
annotating our tests if needed

(which may be tedious and time-consuming but at least it's easy),
butit's . . .
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@® Checks that code is meaningful
@® Checks that tests are strict
@® Easy to get started with

® Difficult to interpret results

... not so easy to interpret the results, noris it . . .
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@® Checks that code is meaningful
@® Checks that tests are strict
@® Easy to get started with

® Difficult to interpret results
® Hard labor on the CPU

Codosaur.us @davearonson

.. . easy on the CPU.
Even if these drawbacks mean it might not be a good fit for our particular current projects right now, | still think it's just . . .
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@® Checks that code is meaningful
@® Checks that tests are strict

@® Easy to get started with

® Difficult to interpret results

® Hard labor on the CPU

© Fascinating concept!

...areally cool idea . . . in a geeky kind of way.

If you'd like to try mutation testing for yourself . . .
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Alloy: MuAlloy

Android: mdroid+

C: mutate.py, SRCIROR

C/C++: accmut, dextool, MART, MuCPP, Mutate++, mutate_cpp, SRCIROR
C#/.NET/Mono: nester, NinjaTurtles, Stryker.NET, Testura.Mutation, VisualMutator
Clojure: mutant

Crystal: crytic

Dart: mutation_test

Elixir: darwin, exavier, exmen, mutation, Muzak [Pro]

Erlang: mu2

Etherium: vertigo

FORTRAN-77: Mothra (written in mid 1980s!)

Go: go-mutesting, gremlins, ooze

Haskell: fitspec, muCheck

Java: jumble, major, metamutator, muJava, pit/pitest, and many more
JavaScript: stryker, grunt-mutation-testing

Pharo: MUTALK

PHP: infection, humbug

PL/SQL: MuPLSQL

Python: cosmic-ray, mutmut, mutpy, xmutant
Ruby: mutant, mutest, heckle
Rust: mutagen
Scala: scalamu, stryker4s
Smalltalk: mutalk
Solidity: RegularMutator
sQL: SQLMutation
Swift: muter
Anything on LLVM: llvm-mutate, mull
Codosaur.us Tool to make more: Wodel-Test (https://gomezabajo.github.io/Wodel/Wodel-Test/) @davearonson

... here is a list of tools for some popular languages and platforms . . . and some others; | doubt many of you are doing FORTRAN-77 these days. The tools
| know are outdated, are crossed out.

And now . ..
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.. .it's your turn! Any questions?

CORUS

T.Rex-2023@Codosaur.us

twitter.com/DaveAronson
linkedin.com/in/DaveAronson
Slides and FULL SCRIPT:
www. Codosaur.us/reds/mutants-pycon-us-23-slides

Codosaur.us @davearonson
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