(Intro to Mutation Testing)

by Dave Aronson
T.Rex-2023@Codosaur.us

CODOSAURUS

Codosaur.us . @davearonson

(Blank slide so | can flip to a new one to start my timer, ignore this.)

https://twitter.com/davearonson
http://Codosaur.us

(Intro to Mutation Testing)

by Dave Aronson
T.Rex-2023@Codosaur.us

CODOSAURUS

Codosaur.us . @davearonson

Hello, Salt Lake City! I'm Dave Aronson, the T. Rex of Codosaurus, and | flew over here on my pet pterodactyl to teach you to kill mutants! (PAUSE!) So,
whaton . ..

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: repeats of https://www.publicdomainpictures.net/en/view-image.php?image=86447 @davearonson

. . . Infinite Earths, makes . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://pixabay.com/vectors/genetic-testing-gene-panel-genetics-2316642 @davearonson

.. . mutation testing different from all the other software testing techniques? The main difference is that most others are about . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://pixabay.com/illustrations/tick-green-tick-correct-642162/ @davearonson

. . . checking whether our code is correct. But mutation testing . . .

https://twitter.com/davearonson
http://Codosaur.us

YOU ASSUMED?

\
YOU KNOW WHAT HAPPENS
WHEN YOU ASSUME—

I DONT
YET YOU'RE CONFIDENTLY
ASSERTING THAT I DO.

Codosaur.us Image: https://xkcd.com/1339/ @davearonson

.. . assumes that our code is correct, at least in the sense of passing its tests. Instead, mutation testing checks for two other qualities. In a typical
codebase, | think the more important one is that our test suite is . . .

https://twitter.com/davearonson
http://Codosaur.us

"use strict";

Codosaur.us @davearonson

... Strict. Now you may be thinking, “Isn’t that what test coverage is for?”

https://twitter.com/davearonson
http://Codosaur.us

You keep using test coverage.

N

I do not thlnk ‘it means

what you ‘think it means. {8
Try/mutation testmg 7 4 }.‘

Codosaur.us Image: generated by me on imgflip.c @davearonson

The only thing that test coverage tells us is that at least one test ran . . .

https://twitter.com/davearonson
http://Codosaur.us

class Conway:
ALIVE = "*"
DEAD = "

Rclassmethod
def next state(cls, cur state, neighbors):

== 3 else cls.DEAD

def another func:

Codosaur.us @davearonson

... the code it claims is “covered”, and none ran the rest of it. It tells us NOTHING about whether the correctness of the code made any difference to
whether a test passed or failed — and isn’t that what we really mean by “tested”?

This is where mutation testing comes in. To check that our test suite is strict, a mutation testing tool will try to . . .

https://twitter.com/davearonson
http://Codosaur.us

B
R

- A <

Codosaur.us Image: https://commons.wikimedia.org/wiki/File:Mind_the_gap_2.JPG @davearonson

... find the gaps in our test suite, that let our code get away with unwanted behavior. Once we find gaps, we can close them by either adding tests or
improving existing tests. Lack of stricthess comes mainly from /lack of tests, or poorly written tests.

The other thing mutation testing checks is that our code is . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://pxhere.com/en/photo/825760 @davearonson

. . . meaningful, so that any semantic change to the code, will produce a noticeable change in its behavior. Lack of meaning comes mainly from code being
unreachable, redundant, or otherwise just not having any real effect. Once we find "meaningless" code, we can figure out why it's meaningless, then make it
meaningful, if that fits our intent, but the usual fix is just to remove it.

Mutation testing . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://www.flickr.com/photos/garryknight/2565937494 @davearonson

. . . puts these two together, by checking that every change to the code, that the tool knows how to do, does indeed make a noticeable change to its
behavior, and that the test suite is indeed strict enough that at least one test will notice that change, and fail.

That's the positive side, but there are some drawbacks. As . ..

https://twitter.com/davearonson
http://Codosaur.us

Fred Brooks, author of
"No Silver Bullet —

Essence and Accident in
Software Engineering”
* (1986 paper)

Codosaur.us Image: https://commons.wikimedia.org/wiki/File:Frederick_Brooks_IMG_2279.jpg @davearonson

.. . Fred Brooks told us back in 1986, there's no . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://www.flickr.com/photos/sdasmarchives/4590226412 @davearonson

... silver bullet! Besides, those are for killing . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://www.publicdomainpictures.net/en/view-image.php?image=199986 @davearonson

.. . werewolves, not mutants!

The first drawback is that it's rather . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://www.jtfb.southcom.mil/Media/Photos/igphoto/2000888525/ @davearonson

... hard labor for the CPU, and therefore usually ra-ther sloooow. We certainly won’t want to mutation-test our whole codebase on every save! Maybe over
a lunch break for a smallish system, or a weekend for a large one. Fortunately, most tools let us just check specific functions, classes, files, and so on. Also,
they usually include some kind of . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://www.maxpixel.net/Progress-Graph-Growth-Achievement-Analyst-Diagram-3078543 @davearonson

.. . incremental mode, so that we can test only the changes since the last mutation test, or the last git commit, or the main branch, or some such difference.
With such filtering, maybe we can test the changes on each save, or at least over a much shorter break.

Another drawback is that it's often . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://pxhere.com/en/photo/717939 @davearonson

... hot at all clear what to do about the results! It tells us that some particular change to the code made no difference to the test results, but what does that
even mean? It takes a lot of interpretation to figure out what a mutant is trying to tell us. Their accent is verrah strayinge, and they’re almost as incoherent
as...

https://twitter.com/davearonson
http://Codosaur.us

8

A
(L

Codosaur.us Image: https://pixabay.com/vectors/zombie-halloween-dead-monster-521243/ @davearonson

.. . zombies, but with a much bigger vocabulary, so they’re not always on about braaaaaaains. They're usually trying to tell us that our code is meaningless,
or our tests are lax, or both, but it can be very hard to figure out exactly how! Even worse, sometimes it'sa. ..

https://twitter.com/davearonson
http://Codosaur.us

- The Boy who
. Cried Wolf

Codosaur.us Image: https://www.flickr.com/photos/jared422/19116202568 @davearonson

.. . false alarm, because the mutation didn't make a test fail, but it didn't make any difference in the first place. It can still take quite a lot of time and effort to
figure that out.

And even if a mutation does make a difference, most programs have quite a lot of code that we just

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://pixabay.com/fi/vectors/ty6-rekisterdidy-laiska-47200/ @davearonson

. . . Shouldn't bother to test, like debugging traces! Fortunately, most tools have ways to tell them "don't bother mutating this line", or even this whole
function, class, file, or whatever . . . but that's usually with comments, which can clutter up the code, and make it less readable.

Now that we've seen the pros and cons, how does mutation testing work, unlike this guy? It. ..

https://twitter.com/davearonson
http://Codosaur.us

Point Mutations

GUUCGAUUGA

DNA;\g l\wu tn‘v mRNA

Normal CAAGCTAACT

"\ GUUCG UUGA

l"“l"l\

CAAGC AACT

OUUC GAUUGA

\}g |‘|n|n nn\
Frameshift Insemon AAG anct

'I!\ GUUCUUGA

!llllll\

Frameshift deletion CAAGAACT

OUU

PG,

Nonsense

Codosaur.us Image: https://commons.wikimedia.org/wiki/File:Thrust_with_fault_propagation_fold.svg @davearonson

. mutates copies of our code, hence the name. It does this to create test failures, also called . . .

https://twitter.com/davearonson
http://Codosaur.us

Fault-propagation fold

Codosaur.us Image: https://commons.wikimedia.org/wiki/File: Thrust_with_fault_propagation_fold.svg @davearonson

... faults. So, mutation testing is a fault-based testing technique. This means it is related to something you might already be familiar with:

https://twitter.com/davearonson
http://Codosaur.us

Image: https://github.com/Netflix/chaosmonkey/raw/master/docs/logo.png

Codosaur.us (used for educational Fair Use purposes) @davearonson

.. . Chaos Monkey, from Netflix. Just like Chaos Monkey uses faults to help Netflix discover flaws in their error recovery, mutation testing uses faults to help
us discover certain flaws in our tests and our code. But the way mutation testing does it, is sort of . . .

https://twitter.com/davearonson
http://Codosaur.us

Image: https://github.com/Netflix/chaosmonkey/raw/master/docs/logo.png

Codosaur.us (used for educational Fair Use purposes) @davearonson

.. . upside down from what Chaos Monkey does. Chaos Monkey is best known for . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://pixabay.com/vectors/injection-vaccine-shot-medical-40696/ + my text @davearonson

. . . injecting faults into Netflix's production network.

https://twitter.com/davearonson
http://Codosaur.us

Image: https://commons.wikimedia.org/wiki/File:Edvard_Munch,_ 1893, The_Scream,
_oil,_tempera_and_pastel_on_cardboard,_91_x_73_cm,_National_Gallery_of_Norway.jpg

Codosaur.us @davearonson

If all still goes well, in the sense that Netflix's customers don't notice, and their metrics still look good, then Netflix knows that their error recovery is working
fine. Mutation testing, however, injects semantic . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://www.flickr.com/photos/funkblast/16937812322 @davearonson

.. . changes, not necessarily problems. We hope all these changes will create faults, but that depends on the test suite. It injects theminto . ..

https://twitter.com/davearonson
http://Codosaur.us

@

I\

Codosaur.us Image: https://pixabay.com/vectors/gene-editing-icon-crispr-icon-2375787/ @davearonson

. . . copies of our code, not our actual network. It does its work in our . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://sservi.nasa.gov/articles/ladee-vibration-testing-complete/ @davearonson

... test environment, not production. (Whew!) And if everything still goes well, in the sense that . . .

https://twitter.com/davearonson
http://Codosaur.us

$ mutation test

280 tests, 420 assertions, 4,987 mutants,
0O failures, 0 errors, 0 excluded

Codosaur.us @davearonson

. .. our tests all still pass, that doesn't mean that all is well, that means that . . .

https://twitter.com/davearonson
http://Codosaur.us

$ mutation tr

280 tests, () assertions, / mutants,
0 failures, € Wxrors, 0 exgl ded

Codosaur.us @davearonson

... there is a problem! Remember, each change to our code should make at least one test fail.

But enough about differences. How does mutation testing work? Let's start with . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://www.flickr.com/photos/nasacommons/8980505397 @davearonson

. . . a high-level view. First, our chosen tool . ..

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://commons.wikimedia.org/wiki/File:Disassembled-rubix-1.jpg @davearonson

.. . breaks our code apart into pieces to test. Usually, these are our functions -- or methods if we're using objects, but I'm just going to say functions. Then,
for each function, it finds . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://pixabay.com/fi/photos/testi-testaus-kupla-muoto-986935/ @davearonson

. . . the tests that cover that function. After find a function’s tests, the tool . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us ‘ Image: comipolaris xTo 05500 jssi @davearonson

. . . makes the mutants from that function. To do that, it looks closely at it to see how it can be changed. For each tiny little way the tool sees to change it,
the tool makes . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://pixabay.com/en/genetic-modification-mutant-mutation-549889/ @davearonson

.. . one mutant, with that one mutation.

Once our tool is done creating all the mutants it can for a given function, it iterates over . . .

https://twitter.com/davearonson
http://Codosaur.us

4

ST

Ages 4 and up

CERMAGE MUTANT NINA

Codosaur.us Image: https://www.flickr.com/photos/39160147@N03/15074089655 @davearonson

... that list. And now we get to the heart of the concept.

https://twitter.com/davearonson
http://Codosaur.us

Mutating function whatever, at something.py:42

Test #
s Hlllﬂﬂlﬂﬂﬁ
2

In Progress

Codosaur.us @davearonson

This chart represent the progress of our tool. The tools generally don't give us quite all this information, let alone so neatly organized, but it's a conceptual
model | use to help illustrate the point.

For each . ..

https://twitter.com/davearonson
http://Codosaur.us

_Mutating functlon whatever at something.py:42

In Progress
To Do
To Do

... mutant, derived from . . .

https://twitter.com/davearonson
http://Codosaur.us

Mutatirie function whatever, at something.py:42

2.l a4 [10
Test# 1 | 2 51 67819 Result

ot vivivlv] [] || |inProgress

2 | P[] T
3] Tebo
I I I A A I Y-
HEEEEEEEEEET

@davearonson

.. . a given function, the tool runs the function's . . .

https://twitter.com/davearonson
http://Codosaur.us

Mutating function.shaotomrox at comething.py: 42

Test# 1|2 (3|4 |5|,6|7 8|9 10!
Result

Mutant #

ot vivivlv] [] || |inProgress

2 | P[] T
X N I I O A I A I Y-
4 L] TeDo
s J L] Tope

Codosaur.us @davearonson

... tests, but it runs them . ..

https://twitter.com/davearonson
http://Codosaur.us

Mutating function whatever, at something.py:42

... using the current mutant in place of the original function.

(PAUSE) If any test. ..

https://twitter.com/davearonson
http://Codosaur.us

Mutating function whatever, at something.py:42

Hll e lﬂﬂﬂ
H In Progress
llll

To Do

III
X N I I O A I A I Y-
4 L] TeDo
s J L] Tope

... fails, this is called . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://pixabay.com/id/illustrations/tengkorak-dan-tulang-bersilang-mawar-693484/ @davearonson

... “killing the mutant”, anditsa. ..

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://pixabay.com/vectors/turtle-tortoise-cartoon-animal-152079/ @davearonson

... good thing. It means that our code is meaningful enough that the change that the tool made, to create this mutant, made a noticeable difference in the
function's behavior, and that at least one test noticed that difference, and failed. Then, the tool will . . .

https://twitter.com/davearonson
http://Codosaur.us

Mutating function whatever, at something.py:42

Result

oz

X N I I O A I A I Y-
4 L] TeDo
s J L] Tope

.. . mark that mutant killed, . . .

https://twitter.com/davearonson
http://Codosaur.us

Mutating function whatever, at something.py:42

. . . stop running any more tests against it, and . . .

https://twitter.com/davearonson
http://Codosaur.us

Mutating function whatever, at something.py:42

Test #
s Hlllﬂﬂlﬂﬂﬁ

IIIIIIIII In Progress

Codosaur.us @davearonson

. move on to the next one. Once a mutant has made one test fail, we don't care how many more it could make fail, like perhaps some of . . .

https://twitter.com/davearonson
http://Codosaur.us

Mutating function whatever, at something.py:42

.. . those blank cells. Like so much in computers, we only care about ones and zeroes.

On the other claw, if a mutant . . .

https://twitter.com/davearonson
http://Codosaur.us

Mutating function whatever, at something.py:42

Test #
Hlllﬂﬂlﬂﬂﬁ
viviviX] |]]

IIIIIIIIII In Progress

. . . lets all the tests pass, then the mutant is said to have . . .

https://twitter.com/davearonson
http://Codosaur.us

Mutating function whatever, at something.py:42

Test #
s Hlllﬂﬂlﬂﬂﬁ

... survived. That means that the mutant has the . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://nl.wikipedia.org/wiki/Bestand:Mimic_Octopus2.jpg @davearonson

.. . superpower of mimicry, skilled enough to fool our tests! This usually means that our code is meaningless, or our tests are lax, or both — and now it's up
to us to figure out how.

Now let's peel back one . . .

https://twitter.com/davearonson
http://Codosaur.us

| TT—

Codosaur.us Image: https://pixabay.com/fi/photos/avaruusolento-marsin-vihrea-hirvio-722415/ @davearonson

... layer of the onion, and look at some technical details of how this works. First, our tool parses . . .

https://twitter.com/davearonson
http://Codosaur.us

class Conway:
ALIVE = "*"
DEAD = " "

@classmethod
def next state(cls, cur state, neighbors):
if cur_state == cls.ALIVE:

r = cls.ALIVE if neighbors in [2,3] else cls.DEAD
else:

r = cls.ALIVE if neighbors == 3 else cls.DEAD
return r

def another func:
whatever

Codosaur.us @davearonson

... our code, usually into an Abstract Syntax Tree. So, this code becomes . . .

https://twitter.com/davearonson
http://Codosaur.us

COHStS CONST VE
||EHHHHHHI
DEF next_state ,

CONSTALIVE

Codosaur.us @davearonson

... this AST (don’t worry about reading it). Theniit. ..

https://twitter.com/davearonson
http://Codosaur.us

S Y .
hd‘ “‘3".* L ovl_ ‘

Codosaur.us Image: https://www.needpix.com/photo/download/667144/cat-tree-climb-young-cat-pet-nature-cat-in-the-tree-domestic-cat-in-the-free @davearonson

.. . traverses the tree, looking for sub-trees, or branches if you will, that represent each function. After finding them, it handles each one as | described
before, starting with looking for each one's tests . . . so how does it do that? That usually relies mainly on us developers, either . . .

https://twitter.com/davearonson
http://Codosaur.us

@mumu tests-for foo

def teST ITOO turns 3 1nto 6:
foo(3) .must equal ©

end

def test foo turns 4 into 10:
foo(4) .must equal 10
end

Codosaur.us @davearonson

.. . annotating our tests, or following some kind of . . .

https://twitter.com/davearonson
http://Codosaur.us

def test{ foo rurns 3 into 6:
foo(3) .must equal ©
end

def test{ foo rurns 4 into 10:
foo(4) .must equal 10
end

Codosaur.us @davearonson

. . . haming convention. These manual techniques are often supplemented and sometimes even replaced by . . .

https://twitter.com/davearonson
http://Codosaur.us

def test foo turns 3 into 6:
foo)3) .must equal ©
end

def test foo turns 4 into 10:
fooj4) .must equal 10
end

Codosaur.us @davearonson

... the tool looking at what tests call what functions, though that can get tricky and unreliable. Anyway, after the tool has found the function's tests, it makes
the mutants. To make mutants from an AST subtree, it . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://pxhere.com/en/photo/1230969 @davearonson

.. . traverses that subtree, just like it did to the whole thing. However, now, instead of looking for even smaller subtrees it can extract, like twigs or
something, it’s looking for nodes where it can change something. Each time it finds one, then for each way it can change that node, it makes one copy of the
function's AST subtree, with that one node changed, in that one way. For instance, suppose our tool has started traversing . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us @davearonson

... the function subtree from that AST | showed earlier, and has gotten down to . . .

https://twitter.com/davearonson
http://Codosaur.us

condition
FUNC CALL in —

Codosaur.us @davearonson

... this if statement. For each way the tool could change that node, it would make a fresh copy, of this whole subtree, with only that one node changed, in
that one way. After it's done making as many mutants as it can by mutating that node, it would continue traversing the subtree, to . . .

https://twitter.com/davearonson
http://Codosaur.us

condition
IF

::fnets CONSTALIVE CONST DEAD CONST3 | | VAR neighbors
yes!
args stmts
VAR neighbors CONST [3,4] CONSTALIVE CONST DEAD

Codosaur.us @davearonson

... the next node. Again, for each way it could change that node, it would make a copy of this whole subtree, with only that mutation. And so on, until it
has . ..

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us @davearonson

.. . traversed the entire subtree.

Now, I've been talking a lot about changing things, so what kind of changes are we talking about? There are quite a lot!

https://twitter.com/davearonson
http://Codosaur.us

X +y

x || y could become:

x | v could become:

Maybe even swap between sets!

Codosaur.us @davearonson

It could change a mathematical, logical, or bitwise operator from one to another,
even across categories when the language allows.

https://twitter.com/davearonson
http://Codosaur.us

x - y could also become y - x
x / y could also become y / x

x ** y could also become y ** x

"x" <> "y" could also become "y" <> "x"

Codosaur.us @davearonson

When the order of operands matters, it could swap them.

https://twitter.com/davearonson
http://Codosaur.us

X <y

could become:

Codosaur.us @davearonson

It could change a comparison from one to another.

https://twitter.com/davearonson
http://Codosaur.us

X

could become:

-X
Ix
~X

. . . orvice-versal

Codosaur.us @davearonson

It could insert or remove a mathematical, logical, or bitwise negation.

https://twitter.com/davearonson
http://Codosaur.us

a foo (x)
b bar (y)

could become:

a foo (x)

or

bar (y)

Codosaur.us @davearonson

It can remove an entire statement.

https://twitter.com/davearonson
http://Codosaur.us

if x == y:
foo(z)

could become:
foo(z)

Codosaur.us @davearonson

It can remove an if-condition . . .

https://twitter.com/davearonson
http://Codosaur.us

while x == y:
foo(z)

could become:

foo (z)

Codosaur.us @davearonson

. .. or a looping condition.

https://twitter.com/davearonson
http://Codosaur.us

"42" .min int
[42] .max int
42 {42} .min_float

could [] .max_float

become: () . :|.nf1n:|.ty
42 1 éine .epsilon
41.9

Codosaur.us @davearonson

It could change a value to some other value, such as changing 42 to any of these, and many more but | had to stop somewhere. It could even change it to
something of a different and possibly incompatible type, such as changing a number into a, if | may quote . . .

https://twitter.com/davearonson
http://Codosaur.us

-

Codosaur.us Image: https://www.flickr.com/photos/herval/50674160 @davearonson

.. . Smeagol, “string, or nothing!”
There are many many more types of changes, but | trust you get the idea!

From here on, there are no more low-level details | want to add, so let’s finally walk through some examples! We'll start with an easy one. Suppose we have
a function . . .

https://twitter.com/davearonson
http://Codosaur.us

def power (x, vy):

X ** y

Codosaur.us @davearonson

... like so. Never mind why, it makes a good simple example, so let’s just roll with it.
Think about what a mutant made from this might return, since that's what our tests would probably be looking at. It sure doesn’t look like it has side effects.

Mainly, such a mutant could return results such as . . .

https://twitter.com/davearonson
http://Codosaur.us

math.max

X
X
X
X
y
X
y
0
1

[]
()
{}

None

=N
o-: K
-
|_l

Codosaur.us

math.min:
math.infinity
math.epsilon

raise (DeliberateError)
"some random string"

math.min_int
math.max

int
float
float

@davearonson

... any of these expressions or constants, and, again, many more but | had to stop somewhere.

Now suppose we had only one test . . .

https://twitter.com/davearonson
http://Codosaur.us

assert power (2, 2)

Codosaur.us @davearonson

... like so. This is a rather poor test, and | think at least one reason why is immediately obvious to most of us, but even so, most of those mutants on the
previous slide would get killed by this test, the ones shown . . .

https://twitter.com/davearonson
http://Codosaur.us

math-min—3Int
b
e
e
e e T
T = S

1A

3
%;iiii

Codosaur.us @davearonson

... here in crossed-out green. The ones returning constants, are very unlikely to match. There's no particular reason a tool would put a 4 there, as opposed
to zero, 1, -1, minimum and maximum signed and unsigned integers and floats, infinity, minus infinity, and other such significant numbers. Subtracting one
argument from the other gets us zero, dividing them gets us one, returning either argument alone gets us two, and the mismatched types and deliberate
errors will at least make the test not pass. But. ..

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us @davearonson

. . . addition, multiplication, and exponentiation in the reverse order, all get us the correct answer. Mutants based on these mutations will therefore "surivive”
our test.

So how do we see that happening? When we run our tool, it gives us a report, that looks roughly like . . .

https://twitter.com/davearonson
http://Codosaur.us

function "power" (demo.py:42)
has 4 surviving mutants:

42 def power (x, y):
42 def power (y, x):

43 ** y
43 + y

43 ** v
43 + * y

43 **k y
43 + **x x

Codosaur.us @davearonson

... this. The format will vary greatly depending on exactly which tool we use, but semantically, the information should be the same. And that is that if we
changed . ..

https://twitter.com/davearonson
http://Codosaur.us

function "power" J(demo.py:42)
haowl . surzizandnly mutants:

42 def power (x, y):
42 def power (y, x):

43 ** y
43 + y

43 ** y
43 * y

43 **k y
43 **x x

Codosaur.us @davearonson

. . . the function called power, in . . .

https://twitter.com/davearonson
http://Codosaur.us

function "power'l (demo.py:42)
has 4 surviving matants:

42 def power (x, y):
42 def power (y, x):

43 ** y
43 + y

43 ** y
43 * y

43 **k y
43 **x x

Codosaur.us @davearonson

... file demo.py, atline 42 . . .

https://twitter.com/davearonson
http://Codosaur.us

furatdC™ powel ™ (Cemg, Dy : 42)
has 4 surviving mutants:

42 def power (x, y):
42 def power (y, x):

43 ** y
43 + y

43 ** y
43 * y

43 **k y
43 **x x

Codosaur.us @davearonson

... in any of four ways, then all its tests still pass.

And, that those ways are: . . .

https://twitter.com/davearonson
http://Codosaur.us

function "power" (demo.py:42)
has 4 surviving mutants:

42 def power (x, y).
42 def power (y, x)_

43 ** y
43 + y

43 ** y
43 * y

43 **k y
43 **x x

Codosaur.us @davearonson

... to change the function declaration to swap the arguments, or . . .

https://twitter.com/davearonson
http://Codosaur.us

function "power" (demo.py:42)
has 4 surviving mutants:

42 def power (x, y):
42 def power (y, x):

43 ** y
43 + y

43 ** v
43 + * y

43 **k y
43 + **x x

Codosaur.us @davearonson

.. . change the function body to change the exponentiation into addition or multiplication, or . . .

https://twitter.com/davearonson
http://Codosaur.us

function "power" (demo.py:42)
has 4 surviving mutants:

42 def power (x, y):
42 def power (y, x):

43 ** y
43 + y

43 ** v
43 + * y

43 **k y
43 + **x x

Codosaur.us @davearonson

.. . to change the body to swap the exponentiation’s operands.

Sowhatis ...

https://twitter.com/davearonson
http://Codosaur.us

function "power" (demo.py:42)
has 4 surviving mutants:

42 def power (x, y):
42 def power (y, x):

43 ** y
43 + y

43 ** v
43 + * y

43 **k y
43 + **x x

Codosaur.us @davearonson

... this set of surviving mutants trying to tell us? We can tell from a glance at . . .

https://twitter.com/davearonson
http://Codosaur.us

def power (x, vy):

X ** y

Codosaur.us @davearonson

... our code, that it's probably not trying to tell us about redundant or unreachable code. The body is just one line so that sort of problem is extremely
unlikely. So it's probably a test gap! The question now boils down to, how are . . .

https://twitter.com/davearonson
http://Codosaur.us

function "power" (demo.py:42)
has 4 surviving mutants:

42 def power (x, y):
42 def power (y, x):

43 ** y
43 + y

43 ** y
43 * y

43 **k y
43 **x x

Codosaur.us @davearonson

.. . these mutants surviving? The usual answer is that . . .

https://twitter.com/davearonson
http://Codosaur.us

mutant power (x, y)

original power (x, y)

Codosaur.us @davearonson

... they return the same result as the original function. Or they have the same side effect — whatever our tests are looking at. To determine how that
happens, it helps to take a closer look at one mutant, and a test it passes. Let's start with . . .

https://twitter.com/davearonson
http://Codosaur.us

the change:

43 - X **x y
43 + X +y

our test:

assert power (2, 2) == 4

Codosaur.us

@davearonson

... the "plus" mutant. Looking at the change, together with our test, makes it clear that this one survives because . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: meme going around, original source unfindable, sorry @davearonson

.. . two plus two equals two fo the two. (And so does two times two, but he's in the background, we can save him for later.)

So how can we Kkill . . .

https://twitter.com/davearonson
http://Codosaur.us

the change:

43 - X ** y
43 + X +y

our test:

assert power (2, 2) == 4

Codosaur.us @davearonson

... this mutant, in other words, make at least one test fail when run against it, that would pass when run against the original code? We just need to make at
least one test use inputs such that x plus y is different from x to the y. For instance, we could add a test or change our existing testto . . .

https://twitter.com/davearonson
http://Codosaur.us

assert power (2, 4)

Codosaur.us @davearonson

.. . assert that two to the fourth power is sixteen. All the mutants that our original test killed, this would still kill. But in addition, two plus four is six, not
sixteen, so this Kills the plus mutant. (See how that works?)

Better yet, two times four is eight, which is also not sixteen! So, this kills the "times" mutant as well. Killing one mutant often kills many other mutants of the
same function.

But. ..

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://pixabay.com/vectors/teenage-mutant-ninja-turtles-turtle-151715/ @davearonson

.. . the pair of argument-swapping mutants survive! What, how can that be? It's because . ..

https://twitter.com/davearonson
http://Codosaur.us

4 *x 2 16

2 **x 4 16

Codosaur.us @davearonson

... four squared is the same as two to the fourth, they’re both sixteen. But that’s not a big deal, we can . . .

https://twitter.com/davearonson
http://Codosaur.us

Oy

S~

S O
oS PN:e

Codosaur.us Image: https://publicdomainvectors.org/en/free-clipart/Superhero-in-red-uniform/45131.html and prior @davearonson

. . . attack these mutants separately, no need to kill all the mutants in one shot and be some kind of superhero about it. To kill them, again, we can either add
a test, or adjust an existing test, to something like . . .

https://twitter.com/davearonson
http://Codosaur.us
https://publicdomainvectors.org/en/free-clipart/Superhero-in-red-uniform/45131.html

assert power (2, 3)

Codosaur.us @davearonson

... this, asserting that two to the third power is eight. Three squared is nine, not eight, so this Kills the argument-swapping mutants. Better yet, two plus
three is five, two times three is six, and both of those are not eight, so the "plus" and "times" mutants stay dead, and we don't getany . ..

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://pixabay.com/vectors/zombie-undead-monster-living-dead-156138/ (modified by me) @davearonson

. . . zombie mutants wandering around, even if . . .

https://twitter.com/davearonson
http://Codosaur.us

assert power (2, 3)

Codosaur.us @davearonson

.. . this were still our one and only test. (PAUSE!) With these inputs, the correct operation is the only simple common one that yields the correct answer.
This isn't the only solution, though; even if we stuck to single digits, there are lots of ways to skin . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://www.flickr.com/photos/greyloch/48214242842 @davearonson

. . . that flerken!

This may make mutation testing sound . . .

https://twitter.com/davearonson
http://Codosaur.us

SIMPLE SIMON

Codosaur.us Image: https://commons.wikimedia.org/wiki/File:Simple_Simon_LCCN2003677693.jpg @davearonson

. . . simple, but this was a downright trivial example.
So let’s look at a more complex example!

Suppose we have a function to send a message, . . .

https://twitter.com/davearonson
http://Codosaur.us

def send message (buf, len):
sent = 0
while sent < len:

sent += send bytes (buf + sent,
len - sent)

return sent

Codosaur.us @davearonson

... like so. This function, send_message, uses send_bytes to send as many bytes as send_bytes could send, like a woodchuck, looping to pick up where it
left off, until the message is all sent. This is a very common pattern in communication software.

A mutation testing tool could make lots of mutants from this, but one of particular interest, would be . . .

https://twitter.com/davearonson
http://Codosaur.us

def send message (buf, len):
sent =
—h e —sent < Jent

sent += send bytes (buf + sent,
len - sent)

return sent

Codosaur.us @davearonson

... this, an example of removing a looping control.

That would make the code read effectively like . . .

https://twitter.com/davearonson
http://Codosaur.us

def send message (buf, len):
sent = 0

sent += send bytes(buf + sent,
len - sent)

return sent

Codosaur.us @davearonson

... this.

Now suppose that this mutant does indeed survive our test suite, which consists mainly of . . .

https://twitter.com/davearonson
http://Codosaur.us

assert send message (msg, size) == size

Codosaur.us @davearonson

... this. (PAUSE!) There's a bit more that I'm not going to show you quite yet, dealing with setting the size and actually creating the message. But even
without seeing that test code, what does the survival of that non-looping mutant tell us? (PAUSE!)

If a mutant that only goes through . . .

https://twitter.com/davearonson
http://Codosaur.us

def send message (buf, len):
sent = 0
while sent < len:

sent += send bytes (buf + sent,
len - sent)

return sent

Codosaur.us @davearonson

... that loop once, acts the same as our normal code, as far as our tests can tell, that means that our tests are only making our normal code go through that
loop once. So, what does that mean? (PAUSE!) By the way, you'll find that interpreting mutants involves a lot of asking yourself “so, what does that mean”,
often deeply recursively!

In this case, it means that we're not testing sending a message larger than send_bytes can handle in one chunk! There are many ways that can happen, but
we’re only going to look at two possibilities. The most likely is that we should have, but simply forgot, or didn’t bother, to test with a big enough message.
For instance, . . .

https://twitter.com/davearonson
http://Codosaur.us

in modulablatasnle

max chunk size = 10 000

in test_send_message:

msg = "foo"

size = length (msqg)

other setup, like stubbing send bytes
assert send message (msg, size) == size

Codosaur.us @davearonson

. . . Suppose our maximum chunk size, what send_bytes can handle in one chunk, is 10,000 bytes. But. ..

https://twitter.com/davearonson
http://Codosaur.us

in module Network:

max chunk size = 10 000

in_test=send _message:

msg = "foo"

STECn=.lorngth (msqg)

other setup, like stubbing send bytes
assert send message (msg, size) == size

Codosaur.us @davearonson

.. . we’re only testing with an itty-bitty three byte message. (PAUSE!)

The obvious fix is to deliberately use a message larger than our maximum chunk size. With this kind of message, we can easily construct one, as shown . . .

https://twitter.com/davearonson
http://Codosaur.us

in module Network:

max chunk size = 10_000

in test.sema=riessage:

size = socket.max chunk size + 1

msg = "x" * size

OClrexw.setup, like stubbins=s€nd bytes
assert send message (msg, size) == size

Codosaur.us @davearonson

... here. (PAUSE!) We just take the maximum size, add some, and construct that big a message.

But now let’s look at another possible cause and solution. Maybe we did test with the largest permissible message, out of a set of predefined messages, or
at least message sizes. For instance, . ..

https://twitter.com/davearonson
http://Codosaur.us

in module Message:

SmallMsgSize = 1 000
LargeMsgSize = 5 000 # the largest

in test_send_message:

size = Message.LargeMsgSize

msg = Message.make msg("a" * size)

other setup, like stubbing send bytes
assert send message (msg, size) == size

Codosaur.us @davearonson

.. . here we have Small and Large message sizes, we test with a Large, and yet, this mutant survives! In other words, we're still sending the whole message
in one chunk. What could possibly be wrong with that? It sounds like a good thing to me! What is this mutant trying to tell us in this case? (PAUSE!)

In this scenario, it’s trying to tell us that a version of send_message with the looping removed will do the job just fine. If we remove the looping, we wind up
with . . .

https://twitter.com/davearonson
http://Codosaur.us

def send message (buf, 1len):
sent = 0

sent += send bytes (buf + sent,
len - sent)

return sent

Codosaur.us @davearonson

... this code | showed you earlier. If we run our mutation testing tool on this, it will show some other stuff as now being redundant, because we only needed
it to support the looping. If we also remove that, then it boils down to . . .

https://twitter.com/davearonson
http://Codosaur.us

def send message (buf, len):

return send bytes (buf + sent,
len - sent)

Codosaur.us @davearonson

... this. (PAUSE!) Now the message is clear: the entire send_message function may well be redundant, so we can just use send_bytes directly! In real-
world code, though, it might not be, because there may be some logging, error handling, and so on, needed in send_message, but at the very least, the
looping was redundant. Fortunately, when it's this kind of problem, the usual solution is clear and easy, just rip out the extra junk that the mutant doesn't
have. This will also make our code more maintainable, by getting rid of useless cruft that just gets in the way of understanding it.

Now that we've seen a few different examples, of spotting bad tests and redundant code, I'd like to address some . . .

https://twitter.com/davearonson
http://Codosaur.us

227

Codosaur.us @davearonson

... common questions. First, this all sounds pretty weird, deliberately making tests fail, to prove that the code succeeds! Where did this whole bizarro idea
come from anyway? Mutation testing has a surprisingly . . .

https://twitter.com/davearonson
http://Codosaur.us

R S\Eronaglys . e T W T

Codosaur.us ttps://pixabay.com/photos/egypt-education-history-egyptian-1826822/ @davearonson

.. . long history -- at least in the context of computers. It was first proposed in 1971, in Richard Lipton's term paper titled “Fault Diagnosis of Computer
Programs”, at Carnegie-Mellon University. The first fool didn't appear until nine years later, in 1980, as part of Timothy Budd's PhD work at Yale. Even
then, it was not practical on typical developer-grade computers, until the early 2000s, with advances in CPU speed, multi-core CPUs, larger and

cheaper memory, and so on.

That leads us to the next question: why is it so CPU- and memory-intensive? To answer that, we need do some math, but don't worry, it's pretty basic.
Suppose our functions have, on average, . . .

https://twitter.com/davearonson
http://Codosaur.us

10 lines

Codosaur.us @davearonson

.. . about ten lines each. And each line has about . ..

https://twitter.com/davearonson
http://Codosaur.us

10 lines
5 mutation points

Codosaur.us @davearonson

... five places where it can be mutated, to any of about . . .

https://twitter.com/davearonson
http://Codosaur.us

10 lines
) ¢ 5 mutation points
x 20 alternatives

. . . twenty alternatives. That works out to about . . .

https://twitter.com/davearonson
http://Codosaur.us

10 lines
) ¢ 5 mutation points
x 20 alternatives

‘= 1000 mutants/function!

Codosaur.us @davearonson

.. . a thousand mutants for each function! And for each one, we'll have to run somewhere between one test, if we're lucky and kill it on the first try, all the
way up to all of that function's tests, if we Kill it on the last try, or worse yet, it survives.

Suppose we wind up running just . . .

https://twitter.com/davearonson
http://Codosaur.us

10 lines
5 mutation points
20 alternatives
= 1000 mutants/function!
X 20 % of the tests, each

X
X

. . . one fifth of the tests for each mutant. Since we start with a thousand mutants, that's still . . .

https://twitter.com/davearonson
http://Codosaur.us

10 lines
5 mutation points
20 alternatives

1000 mutants/function!
X 20 % of the tests, each
= 200 x as many test runs!

Codosaur.us @davearonson

.. . two hundred times the test runs for that function, compared to regular testing. If our test suite normally takes a zippy ten seconds, then with these
assumptions, mutation testing will take about two thousand seconds. That might not sound like much, because I’'m saying “seconds”, but it's over half an
hour! 1 don’t want to sit and wait for that! So remember to use the filtering | spoke of at the start.

To summarize at last, mutation testing is a powerful technique to . . .

https://twitter.com/davearonson
http://Codosaur.us

@® Checks that code is meaningful

Codosaur.us @davearonson

... help ensure that our code is meaningful and . . .

https://twitter.com/davearonson
http://Codosaur.us

@® Checks that code is meaningful
@® Checks that tests are strict

Codosaur.us @davearonson

.. .our tests are strict. It's. ..

https://twitter.com/davearonson
http://Codosaur.us

@® Checks that code is meaningful
@® Checks that tests are strict
@® Easy to get started with

Codosaur.us @davearonson

easy to get started with, in terms of setting up most of the tools and
annotating our tests if needed

(which may be tedious and time-consuming but at least it's easy),
butit's . . .

https://twitter.com/davearonson
http://Codosaur.us

@® Checks that code is meaningful
@® Checks that tests are strict
@® Easy to get started with

® Difficult to interpret results

... not so easy to interpret the results, noris it . . .

https://twitter.com/davearonson
http://Codosaur.us

@® Checks that code is meaningful
@® Checks that tests are strict
@® Easy to get started with

® Difficult to interpret results
® Hard labor on the CPU

Codosaur.us @davearonson

.. . easy on the CPU.
Even if these drawbacks mean it might not be a good fit for our particular current projects right now, | still think it's just . . .

https://twitter.com/davearonson
http://Codosaur.us

@® Checks that code is meaningful
@® Checks that tests are strict

@® Easy to get started with

® Difficult to interpret results

® Hard labor on the CPU

© Fascinating concept!

...areally cool idea . . . in a geeky kind of way.

If you'd like to try mutation testing for yourself . . .

https://twitter.com/davearonson
http://Codosaur.us

Alloy: MuAlloy

Android: mdroid+

C: mutate.py, SRCIROR

C/C++: accmut, dextool, MART, MuCPP, Mutate++, mutate_cpp, SRCIROR
C#/.NET/Mono: nester, NinjaTurtles, Stryker.NET, Testura.Mutation, VisualMutator
Clojure: mutant

Crystal: crytic

Dart: mutation_test

Elixir: darwin, exavier, exmen, mutation, Muzak [Pro]

Erlang: mu2

Etherium: vertigo

FORTRAN-77: Mothra (written in mid 1980s!)

Go: go-mutesting, gremlins, ooze

Haskell: fitspec, muCheck

Java: jumble, major, metamutator, muJava, pit/pitest, and many more
JavaScript: stryker, grunt-mutation-testing

Pharo: MUTALK

PHP: infection, humbug

PL/SQL: MuPLSQL

Python: cosmic-ray, mutmut, mutpy, xmutant
Ruby: mutant, mutest, heckle
Rust: mutagen
Scala: scalamu, stryker4s
Smalltalk: mutalk
Solidity: RegularMutator
sQL: SQLMutation
Swift: muter
Anything on LLVM: llvm-mutate, mull
Codosaur.us Tool to make more: Wodel-Test (https://gomezabajo.github.io/Wodel/Wodel-Test/) @davearonson

... here is a list of tools for some popular languages and platforms . . . and some others; | doubt many of you are doing FORTRAN-77 these days. The tools
| know are outdated, are crossed out.

And now . ..

https://twitter.com/davearonson
http://Codosaur.us

.. .it's your turn! Any questions?

CORUS

T.Rex-2023@Codosaur.us

twitter.com/DaveAronson
linkedin.com/in/DaveAronson
Slides and FULL SCRIPT:
www. Codosaur.us/reds/mutants-pycon-us-23-slides

Codosaur.us @davearonson

https://twitter.com/davearonson
http://Codosaur.us

