Kill All Mutants!

(Intro to Mutation Testing)
by Dave Aronson

(Blank slide so I can flip to a new one to start my timer, ignore this.)
CURRENT TIME, at medium speed: was 39 minutes, want max 40 of content (plus 5 of Q\&A), so aim for $35-40$, so SKIP SOME MORE and WATCH ADLIBS!

Kill All Mutants!

(Intro to Mutation Testing)
by Dave Aronson

Guten Tag, Wien!

 (Hello, Vienna!)

Mein Name ist Dave Aronson, (28)
 (I'm Dave Aronson,)

der T-Rex von Codosaurus,

CODOSÅURUS

(the T. Rex of Codosaurus,)

und Ich flog her

auf meinem Pterodaktylus

(on my pterodactyl)

um Euch zu zeigen

(to teach you)

wie man mutanten tötet!

(how to kill mutants!)

auf Englisch.

(in English.)

. . . mutation testing different from other software testing techniques? The main difference is that most of the others are about . . .

checking whether our code is correct. But mutation testing

. . . assumes that our code is correct, at least in the sense of passing its tests. Instead, mutation testing checks two other qualities. In a typical codebase, I think the more important one is that our test suite is . . .

"use strict";

No. (PAUSE!) The only thing that test coverage tells us is that at least one test ran

```
class Conway:
    ALIVE = "*"
    DEAD
```

```
    @classmethod
    def next state(cls, cur state, neighbors):
        if cur_state == cls.AIIVE:
        r = cls.ALIVE if neighbors in [2,3] else cls.DEAD
        else:
            r = cls.ALIVE if neighbors == 3 else cls.DEAD
        return r
```

 def another_func:
 \# whatever
 . . . the code it claims is "covered". It tells us NOTHING about whether the correctness of that code made any difference to whether any test passed. And isn't that what we really mean by "tested"?

So how can we tell if the code really is "tested"? As you may have guessed, that . . . is where mutation testing comes in.
To check that our test suite is strict, a mutation testing tool will try to . . .

... find the gaps in our test suite, that let our code get away with unwanted behavior. Once we find gaps, we can close them by either adding tests or improving existing tests. Lack of strictness comes mainly from lack of tests, or poorly written tests.

The other thing mutation testing checks, is that our code is . . .

. . . meaningful, so that any tiny little semantic change to the code (versus structural or syntactic changes), will produce a noticeable change in its behavior. Lack of meaning comes mainly from code being unreachable, redundant, or otherwise just not having any real effect. Once we find "meaningless" code, we can figure out why it's meaningless, then make it meaningful, if that fits our intent, but the usual fix is just to remove it.

Mutation testing . . .

. . . puts these two together, by checking that every change to the code, that the tool knows how to do, does indeed make a noticeable change to its behavior, and that the test suite is indeed strict enough that at least one test will indeed notice that change, and fail.

That's the positive side, but there are some drawbacks. As . . .

. silver bullet! Besides, those are for killing .

. werewolves, not mutants!
The first drawback is that it's rather

. . . hard labor on the CPU, and therefore usually ra-ther sloooow. We certainly won't want to mutation-test our entire codebase on every save! Maybe over a lunch break for a smallish system, or a weekend for a large one. Fortunately, most tools let us just check specific functions, classes, files, and so on. Also, they usually include some kind of . . .

. . . incremental mode, so that we can test only the changes since the last mutation test, or the last git commit, or the main branch, or some such difference. With such filtering, maybe we can test just the relevant changes on each save, or at least over a much shorter break.

Another drawback is that it's often . .

. . . not at all clear what to do about the results! It tells us that some particular change to the code made no difference to the test results, but what does that even mean? It takes a lot of interpretation to figure out what a mutant is trying to tell us. They're almost as incoherent as

. . . zombies, but with a much bigger vocabulary, so they're not always on about braaaaaaains! They're usually trying to tell us that our code is meaningless, or our tests are lax, or both, but it can be very hard to figure out exactly how! Even worse, sometimes it's a

. . . false alarm, because the mutation didn't make a test fail, but it didn't make any behavioral difference in the first place. It can still take quite a lot of time and effort to figure that out.

And even if a mutation does make a difference, most programs have quite a lot of code that we just . .

. . . shouldn't bother to test, like debugging traces. Fortunately, most tools have ways to tell them "don't bother mutating this line", or even this whole function, class, file, or whatever . . . but that's usually with comments, which can clutter up the code, and make it less readable.

Now that we've seen some of the pros and cons, how does mutation testing work, unlike this guy? It . . .

. . mutates copies of our code, hence the name. It does this with the intent to create test failures, also known as . . .

. . . faults. So, mutation testing can be categorized as a "fault-based" testing technique. This means that it is related to something you might already be familiar with:

. . . Chaos Monkey, from Netflix. Just like Chaos Monkey uses faults to help Netflix discover flaws in their error recovery, mutation testing uses faults to help us discover certain flaws in our tests and our code. But the way mutation testing does it, is sort of . . .

. . . upside down from what Chaos Monkey does. Chaos Monkey is best known for . . .

. . . injecting faults, such as latency, jitter, and dropped connections, into Netflix's production network. (QUICK-CUT TO NEXT SLIDE!)

If all still goes well, in the sense that Netflix's customers don't notice, and their metrics still look good, then Netflix knows that their error recovery is working fine. Mutation testing, however, injects semantic ...

. . changes, not necessarily problems. We hope all these changes will create faults, but that depends on the test suite. It injects them into . .

... copies of our code, not our actual network, and does this in our . . .

. . . test environment, not production. (Whew!) And if everything still goes well, in the sense that . . .

our tests all still pass, that doesn't mean that all is well, that means that

there is a problem! Remember, each change to our code should make at least one test fail.
Mutation testing has also been compared to

. . . fuzzing, a security penetration technique involving throwing random data at an application. Mutation testing is somewhat like fuzzing our code rather than fuzzing the data, but it's

. . . not random. These tools have a set of mutations they know how to do. The smarter ones can use the results of simpler mutations, to know they don't need to bother with more complex ones, so it may sometimes do different things and therefore look random, but it's not.

But enough about differences. What exactly does mutation testing do, and how? Let's start with . . .

. a high-level view. First, our chosen tool . . .

breaks our code apart into pieces to test. Usually, these are our functions -- or methods if we're doing object-oriented programming, but l'm just going to say functions. Then, for each function, it tries to find .

. . . the tests that cover that function. If the tool can't find any applicable tests, most will simply skip this function. Better yet, most those of them will warn us, so we know we need to add or maybe annotate some tests. Some, though, will use the whole test suite, which is horribly inefficient, because the vast majority of the tests are almost certainly not relevant to this particular function.

Assuming we aren't skipping this function, next the tool . . .

. makes mutants from that function. To do that, it looks closely at it to see how it can be changed. For each tiny little way the tool sees to change it, the tool makes . . .

. . . one mutant, with that one mutation.

Once our tool is done creating all the mutants it can for a given function, it iterates over . . .

. that list. And now we get to the heart of the concept

This chart represent the progress of our tool. The tools generally don't give us quite all this information, let alone so neatly organized, but it's a conceptual model I use to help illustrate the point.

For each . . .

mutant, derived from . . .

. . a given function, the tool runs the function's . . .

Mutating function - \%hatovar, at comething.py: 42											
Test \#	1	2	3	4	5	6	7	8	9	10	Result
Mutant \#											Result
1	\checkmark	\checkmark	\checkmark	\checkmark	Σ						In Progress
2											To Do
3											To Do
4											To Do
5											To Do
Codosaurus @davearonso											

tests, but it runs them . .

. . using the current mutant in place of the original function.
(PAUSE) If any test...

fails, this is called . . .

"killing the mutant", and it's a . .

good thing. It means that our code is meaningful enough that the tiny change that the tool made, to create this mutant, actually made a noticeable difference in the function's behavior, and that our test suite is strict enough that at least one test actually noticed that difference, and failed. Then, the tool will

mark that mutant killed, . .

stop running any more tests against it, and . .

Mutating function whatever, at something.py : 42											
Test \# Mutant \#	1	2	3	4	5	6	7	8	9	10	Result
1	\checkmark	\checkmark	\checkmark	\checkmark	X						Killed
2	Σ										In Progress
3											To Do
4											To Do
5											To Do

. . move on to the next one. Once a mutant has made one test fail, we don't care how many more it could make fail. Like so much in computers, we only care about ones and zeroes.

On the other claw, if a mutant .

Mutating function whatever, at something.py: 42											
Test \# Mutant \#	1	2	3	4	5	6	7	8	9	10	Result
1	\checkmark	\checkmark	\checkmark	\checkmark	*						Killed
2	\checkmark	In Progress									
3											To Do
4											To Do
5											To Do
Codosaurus											@davearonso

lets all the tests pass, then the mutant is said to have .

. . survived. That means that the mutant has the . . .

. . . superpower of mimicry, skilled enough to fool our tests! This usually means that our code is meaningless, or our tests are lax, or both - and now it's up to us to figure out how.

Now let's peel back one . . .

. . . layer of the onion, and look at some technical details of how this works. First, our tool parses . . .

```
    class Conway
    ALIVE = "*"
    DEAD
    @classmethod
    def next state(cls, cur state, neighbors):
        if cur state == cls.ALIVE:
```



```
            else
            result = cls.ALIVE if neighbors == 3 else cls.DEAD
            return result
    def another func:
    # whatever
    def some_other_func:
    # whatever
    def yet_another_func:
        # whatever
. . . our code, usually into an Abstract Syntax Tree. So, this code, which you don't need to understand in detail, becomes . .

this AST, which you also don't need to understand. Just notice that there are several functions in there, rooted at . . .

. the DEF nodes, and that l've fleshed out the AST subtree for one of them.
After the tool makes an AST out of our code, then it . . .

. . . traverses the tree, looking for sub-trees, or branches if you will, that represent each function. After finding them, it handles each one as I described before, starting with looking for each one's tests . . . so how does it do that? That usually relies mainly on us developers, either . . .

\section*{Qmumu tests-for foo}
def test_loo_turns_3 into_6: foo(3).must_equal \(\overline{6}\)
```

def test_foo_turns_4_into_10:
foo(4).must_equal 10

```

convention in naming the tests, the files, or perhaps both. These manual techniques are often supplemented and sometimes even replaced by
```

def test_foo_turns_3_into_6:
foo 3).must_equal }\overline{6
def test_foo_turns_4_into_10:
(foo)4).must_equal 10

```
```

def tect fon turns_3_into_6:
foo_test_hèlper('\overline{3},}6
def test fon turns_4_into_10:
foo_test_helper'4, 10)

```
the function isn't called directly. Anyway, after the tool has found the function's tests, then, assuming it won't skip this function because it didn't find any tests, it makes the mutants. To make mutants from an AST subtree, it . .

. . . traverses that subtree, just like it did to the whole thing. But now, instead of looking for even smaller subtrees it can extract, like twigs or something, it's looking for nodes where it can change something. Each time it finds one, then for each way it can change that node, it makes one copy of the function's AST subtree, with that one node changed, in that one way, or as I said earlier, one mutant with that one mutation. For instance, suppose our tool has started traversing . . .

the function subtree from that AST I showed earlier, and has gotten down to

this if statement. For each way the tool could change that node, it would make a fresh copy, of this whole subtree, with only that one node changed, in that one way. After it's done making as many mutants as it can by mutating that node, it would continue traversing the subtree, to ...

. . . the next node. Again, for each way it could change that node, it would make a copy of this whole subtree, with only that mutation. And so on, until it has...

. . traversed the entire subtree.

Now, I've been talking a lot about changing things, so what kind of changes are we talking about? There are quite a lot!


It could change a mathematical, logical, or bitwise operator from one to another. When the language allows, it could even cross these categories. For instance, in many languages, we can treat anything as a boolean, and all kinds of integers as bitfields, so x TIMES y could become x AND y, or x BITWISE-EXCLUSIVE-OR y, and so on.
```

 x - y could also become y - x
 x / y could also become y / x
 x ** y could also become y ** x
 "x" + "y" could also become "y" + "x"
    ```
```

x < y

```

\section*{could become:}


\section*{could become:}

\section*{-x}
! \(\times\)
\(\sim X\)
. . . or vice-versa!

\section*{if \(\mathbf{x}=\mathbf{y}\) : foo(z)}

\section*{could become:}

\section*{foo (z)}
\[
\begin{aligned}
& \text { while } x==y: \\
& \text { foo }(z)
\end{aligned}
\]

\section*{could become:}

\section*{foo (z)}
```

def f(x, y):
\# lots of code here
could become:
def f(x, y): return 0
def f(x, y): return :math.max_int
def f(x, y): return "a string"
def f(x, y): return nil
def f(x, y): return x
def f(x, y): return fail("boom")
def f(x, y): \# nothing
etc.

It could replace a function's entire contents with returning a constant, or any of the arguments, or raising an error, or nothing at all, if the language permits.

It could change a value to some other value, such as changing 42 to any of these, and many more but I had to stop somewhere. It could even change it to something of a different and possibly incompatible type, such as changing a number into a, if I may quote . .

. . . Smeagol, "string, or nothing!"
There are many many more types of changes, but I trust you get the idea!
From here on, there are no more low-level details I want to add, so let's finally walk through some examples! We'll start with an easy one. Suppose we have a function. . .

def power (x, y): \mathbf{x} ** \mathbf{y}

like so. Never mind why, it just makes a good simple example, so let's just roll with it.
Think about what a mutant made from this might return.
Mainly, it could return results such as

| $x+y$ | math.min_int |
| :--- | :--- |
| $x-y$ | math.max_int |
| $x \neq y$ | math.max_float |
| x / y | math.min_float |
| $\mathbf{y} * * x$ | math.infinity |
| x | math.epsilon |
| \mathbf{y} | raise(DeliberateError) |
| 0 | "some random string" |
| 1 | [] |
| -1 | () |
| 0.1 | \{\} |
| -0.1 | None |
| Codosaur.us | |

. . . any of these expressions or constants, and, again, many more but I had to stop somewhere.
Now suppose we had only one test . . .

like so. This is a rather poor test, and I think at least one reason why is clear to most of us, but even so, most of those mutants on the previous slide would get killed by this test, the ones shown

. . . here in crossed-out green. The ones returning constants, are very unlikely to match. There's no particular reason a tool would put a 4 there, as opposed to zero, $1,-1$, and other such significant numbers. Changing the exponentiation into subtracting one argument from the other gets us zero, dividing them gets us one, returning either argument alone gets us two, and the mismatched types and deliberate errors will at least make the test not pass. But . . .

addition, multiplication, and exponentiation in the reverse order, all get us the correct answer. Mutants based on these mutations will therefore "survive" our test.

So how do we see that happening? When we run our tool, it gives us a report, that looks roughly like . . .

this. The exact words, format, amount of context, and so on, will vary greatly depending on exactly which tool we use, but semantically, the information should be pretty much the same. And that is, that if we changed . . .

the function called power, in

file demo.py, at line 42 . .

in any of four ways, then all its tests still pass.
And, that those four ways are:

to swap the arguments, . .

change the exponentiation into addition or multiplication, or . . .

swap the exponentiation's operands.
So what is . .

this set of surviving mutants trying to tell us? We can tell from a glance at . . .

def power (\mathbf{x}, y): \mathbf{x} ** \mathbf{y}

. our code, that it's probably not trying to tell us about redundant or unreachable code. The body is just one line, so that sort of problem is extremely unlikely. So it's probably a test gap! The question now boils down to, how are

these mutants surviving? Are they

. . . pulling heists? Are they getting free room and board at the . . .

. . Xavier Institute? Or what?
The usual answer is that . . .

mutant_power (x, y)

C

original_power (x, y)

the change:

our test:

```
assert power (2, 2) == 4
```

the "plus" mutant. Looking at the change, together with our test, makes it much clearer that this one survives because

. two plus two equals two to the two (singing) tu tu, tu tu tu-tu tu (And so does two times two, but he's in the background, we can save him for later.) So how can we kill . . .

the change:

43 - x ** y
 $43+$
 $x+y$

our test:

assert power $(2,2)==4$
this mutant, in other words, make at least one test fail when run against it, that would pass when run against the original code? We need to make at least one test use inputs such that x plus y is different from x to the y . For instance, we could add a test or change our existing test to . .

assert power $(2,4)$ == 16

. . . something like asserting that two to the fourth power is sixteen. All the mutants that our original test killed, this would still kill. But in addition, two plus four is six, not sixteen, so this kills the plus mutant. (See how that works?)

Better yet, two times four is eight, which is also not sixteen! We devs should certainly know our powers of two at least that well! So, this kills the "times" mutant as well. Killing one mutant often kills other mutants of the same function, often a large fraction of them.

But . . .

the pair of argument-swapping mutants survive, because

four squared and two to the fourth, are both sixteen. But that's not a big deal, we can

attack these mutants separately, no need to kill them all in one shot and be some kind of superhero about it. To kill them, again, we can either add a test, or adjust an existing test, to something like . . .

. . asserting that two to the third power is eight. Three squared is nine, not eight, so this kills the argument-swapping mutants. Better yet, two plus three is five, two times three is six, and both of those are, guess what, not eight, so the "plus" and "times" mutants stay dead, and we don't get any . .

zombie mutants wandering around, even if . .

this were still our one and only test. (PAUSE!) With these inputs, the correct operation is the only simple common one that yields the correct answer. This isn't the only solution, though; even if we stuck to single digits, there are lots of ways to skin

that flerken!

This may make mutation testing sound . . .

. . . simple, but this was a downright trivial example, so we could easily think up arguments to make all mutants, within reason, behave differently from the original code.

So let's look at a more complex example!
Suppose we have a function to send a message, . . .

```
    def send message (buf, len):
    sent = 0
    while sent < len:
        sent += send bytes (buf + sent,
                            len - sent)
    return sent
```

like so. This function, send_message, uses send_bytes to send as many bytes as send_bytes could send, kind of like a woodchuck, looping to pick up where it left off, until the message is all sent. This is a very common pattern.

A mutation testing tool could make lots of mutants from this, but one of particular interest, would be . .

```
    def send message (buf, len):
    sent = 0
while sent < len:
        sent += send bytes (buf + sent,
                            len - sent)
    return sent
```

this, an example of removing a looping control.
That would make the code read effectively like

```
def send_message(buf, len):
    sent = 0
    sent += send_bytes(buf + sent,
                                    len - sent)
    return sent
```

this.
Now suppose that this mutant does indeed survive our test suite, which consists mainly of

this. (PAUSE!) There's a bit more that I'm not going to show you quite yet, dealing with setting the size and actually creating the message. But even without seeing that test code, what does the survival of that non-looping mutant tell us? (PAUSE!)

If a mutant that only goes through . .

```
    def send message(buf, len):
    sent = 0
    while sent < len:
        sent += send bytes (buf + sent,
                            len - sent)
    return sent
```

. . . that loop once, acts the same as our normal code, as far as our tests can tell, that means that our tests are only making our normal code go through that loop once. So, what does that mean? (PAUSE!) By the way, you'll find that interpreting mutants often involves a lot of asking yourself "so, what does that mean", often deeply recursively!

In this case, it means that we're not testing sending a message larger than send bytes can handle in one chunk! There are many ways that can happen, but we're only going to look at two possibilities. The most likely is that we should have, but simply forgot, or didn't bother, to test with a big enough message.
For instance, . . .

suppose our maximum chunk size, what send_bytes can handle in one chunk, is a phenomenal 10,000 bytes. But .

we're only testing with an itty-bitty three byte message. (PAUSE!)
The obvious fix is to deliberately use a message larger than our maximum chunk size. With this kind of message, we can easily construct one, as shown . .

in module Network:

max_chunk_size = 10_000
in test_senu_linessage:

```
size = Network.max_chunk_size + 1
```

msg = "x" * size
\# Othor setup, like stubbing oend_bytes
assert send_message (msg, size) == size

Codosaur.us
. . . here. (PAUSE!) We just take the maximum size, add some, and construct that big a message.
But now let's look at another possible cause and solution. Maybe we did test with the largest permissible message, out of a set of predefined messages, or at least message sizes. For instance, . . .

```
in module Message:
SmallMsgSize = 1_000
LargeMsgSize = 5_000 # the largest
in test_send_message:
size = Message.LargeMsgSize
msg = Message.make_msg("a" * size)
# other setup, like stubbing send_bytes
assert send_message(msg, size) == size
Codosaur.us @davearonson
```

. . . here we have Small and Large message sizes, we test with a Large, and yet, this mutant survives! In other words, we're still sending the whole message in one chunk. What could possibly be wrong with that? It sounds like a good thing to me! What is this mutant trying to tell us in this case? (PAUSE!)

In this scenario, it's trying to tell us that a version of send_message with the looping removed will do the job just fine. If we remove the looping, we wind up with . . .

```
def send message (buf, len):
    sent = 0
    sent += send bytes(buf + sent,
                                    len - sent)
    return sent
this code I showed you earlier. Some other stuff is now clearly redundant, because we only needed it to support the looping. If we also remove that, then it boils down to

\section*{def send message (buf, len): return send bytes (buf, len)}
. . . this. (PAUSE!) Now the ultimate message is crystal clear: the entire send_message function may well be redundant, so we can just use send_bytes directly! In real-world code, though, it might not be, because there may be some logging, error handling, and so on, needed in send_message, that we can't shove down the stack into send_bytes, but at the very least, the looping was redundant. Fortunately, when it's this kind of problem, with meaningless code, the usual solution is clear and easy, just rip out the extra junk that the mutant doesn't have. This will also make our code more maintainable, by getting rid of useless cruft that just gets in the way of understanding it. And for the security-conscious, this might also reduce potential attack surface.

Now that we've seen examples of finding both bad tests and redundant code, l'd like to address some . . .

. . . common questions. First, this all sounds pretty weird, deliberately making tests fail, to prove that the code succeeds! Where did this whole . .

bizarro idea come from anyway? Mutation testing has a surprisingly

. . . long history — at least in the context of computers. It was first proposed in 1971, in Richard Lipton's term paper titled "Fault Diagnosis of Computer Programs", at Carnegie-Mellon University. The first actual tool didn't appear until 1980, as part of Timothy Budd's PhD work at Yale. Even then, it was not practical on typical developer-grade computers, until the early 2000s, after significant advances in CPU speed, multi-core CPUs, larger and cheaper memory, and so on. But now, it's practical even on fairly low-end, but at least relatively modern, systems like this 2020 MacBook Air.

That leads us to the next question: why is it so CPU- and memory-intensive? To answer that, we need do some math, but don't worry, it's pretty basic. Suppose our functions have, on average, ...
10 lines
about ten lines each. And each line has about

five places where it can be mutated, to any of about

twenty alternatives. That works out to about

\section*{10 lines \\ x 5 mutation points x 20 alternatives = 1000 mutants/function!}
a thousand mutants for each function! And for each one, we'll have to run somewhere between one test, if we're lucky and kill the mutant on the first try, all the way up to all of that function's tests, if we kill it on the last try, or worse yet, it survives.

Suppose we wind up running just

\section*{10 lines \\ x 5 mutation points \\ x 20 alternatives \\ = 1000 mutants/function! \\ x 20 \% of the tests, each \\ = \(200 \times\) as many test runs! \\ @davearonson} . . two hundred times as many test runs for that function, as just doing regular testing. If our test suite normally takes a zippy ten seconds, then with these
assumptions, mutation testing will take about two thousand seconds. That might not sound like much, because l'm saying "seconds", but it's over half an hour!

. . good news! Over the past decade or so, there has been a lot of research on trimming down the number of mutants, mainly by weeding out ones that are semantically equivalent to the original code, redundant with other mutants, or trivial in various ways such as creating an obvious uncaught error condition. Such things have reduced the mutant horde down to about one third! But even with that rare level of success, it's still

. . . no silver bullet, as this takes lots of CPU time itself -- and there are still quite a lot of mutants left to deal with The next question is, when making each mutant, why change it in only .

. . one way?
There are multiple reasons. First off, the main theoretical underpinning of mutation testing is . . .

. . . the Competent Programmer hypothesis. Let's give that a quick check. Raise your hand if you're competent! (PAUSE!) Okay, looks like most of us. The rest of you, you probably really are competent, so you might want to read up on Impostor Syndrome.

Long story short, the Competent Programmer Hypothesis is the idea that we generally have a pretty good clue what we're doing, and when we make a mistake, it's usually a single small mistake, like adding when we should subtract, or comparing using "less than or equal" when we mean "strictly less than", or greater than, or whatever. Does this kind of simple substitution sound familiar? It's exactly what a mutation testing tool does! So we can think of mutation testing as sort of a "did you mean" function, like how Google suggests a different search if ours didn't have many hits.

There are also practical considerations. For one, it helps us poor humans . . .


FOCUS! It's much easier to tell what a surviving mutant is trying to say, if we're only talking about one thing in the first place. Another reason is that multiple changes may . .

balance each other out, leading to more false alarms. Lastly, allowing multiple mutations would create a combinatorial . .

. . . explosion of mutants, with the tool making multiple orders of magnitude more mutants per function, which would make it even more CPU- and memoryintensive.

Lastly, a more practical question: where should we fit this into . .
- Claim Ticket and Make Branch
- Write Tests
- Write Code
- Lint?
- Refactor?
- Create Pull Request
- Get PR Approved
- Merge PR and Delete Branch
- Go Back, Jack, Do It Again
```

- Claim Ticket and Make Branch
- Write Tests
- Write Code
- Lint?
- Refactor?
- Create Pull Request
- Get PR Approved
- Merge PR and Delete Branch
- Go Back, Jack, Do It Again

```
... here, as part of the requirements for a Pull Request (or whatever your process uses) to be approved. You can set some standards for what you're willing to tolerate, such as no surviving mutants on new code, and no increase on the whole codebase, to sort of rachet that down. Ideally this would be automated, as part of a CI pipeline, kicked off when the PR is created, that would block it if the criteria are not met. That said, I would also do it in my own work as part of . .
```

- Claim Ticket and Make Branch
- Write Tests
- Write Code
- Lint?
- Refactor?
- Create Pull Request
- Get PR Approved
- Merge PR and Delete Branch
- Go Back, Jack, Do It Again

```

\footnotetext{
. . the Linting step, where I apply all sorts of tools to assess the quality of the code, its adherence to our group's agreed standards, and so on, before other people see it. All of that should also still be done in the CI pipeline, since, let's face it, most developers won't bother to do it on their own.
}

To summarize at last, mutation testing is a powerful technique to

help ensure that our code is meaningful and

\title{
- Checks that code is meaningful © Checks that tests are strict
}

\title{
- Checks that code is meaningful - Checks that tests are strict \\ - Easy to get started with
}
- Checks that code is meaningful - Checks that tests are strict
- Easy to get started with
© Difficult to interpret results
- Checks that code is meaningful - Checks that tests are strict
- Easy to get started with
© Difficult to interpret results
© Hard labor on the CPU

\title{
- Checks that code is meaningful - Checks that tests are strict \\ - Easy to get started with \\ © Difficult to interpret results \\ © Hard labor on the CPU \\ © Fascinating concept! ©
}

. . . here is a list of tools for some popular languages and platforms . . . and some others; I doubt many of you are doing FORTRAN-77 these days. Don't bother trying to read all that now, the final slide has the URL for the whole deck. The tools I know are outdated, are crossed out, but I don't know or follow quite all those languages and tools.

To find out how a large tech company is using it for real, check out the next talk in this very room, where Lars Kempe and Clemens Bonse will be telling you how they use it at . . .

Dolby, yes the sound people. Disclaimer: they have no connection to me or this talk, I just like promoting talks on my favorite topics. And now . .

it's your turn! If you have any questions, l'll take them now, or if you think of anything later, there's my contact info, plus the URL for the slides, complete with a full script, which l've mostly stuck to. Any questions?```

