
@davearonsonwww.Codosaur.us

Kill All Mutants!
(Intro to Mutation Testing)

by Dave Aronson
T.Rex-2020@Codosaur.us

Slides: bit.ly/kill-mutants-JSConfHI-2020

Aloha, Hawai'i! I'm Dave Aronson, the T. Rex of Codosaurus, LLC, and I'm here to teach you to KILL MUTANTS!

So what are those? In our universe, that of software development, not comic books, they're something used in Mutation Testing. So what on Infinite Earths
is . . .

https://twitter.com/davearonson
http://www.Codosaur.us/
mailto:T.Rex-2020@Codosaur.us

@davearonsonwww.Codosaur.us Image: https://pixabay.com/vectors/genetic-testing-gene-panel-genetics-2316642

. . . mutation testing? You might think it’s about testing the mutations used in genetic algorithms, but no. It’s a way to test our code, and our unit test suite,
by using mutations. Its most unusual benefit is to help ensure that our unit tests are strict, by . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://commons.wikimedia.org/wiki/File:Mind_the_gap_2.JPG

. . . finding the gaps in our unit test suites, that let our code get away with unwanted behavior. Lack of strictness usually comes from lack of tests, poorly
written tests, or poorly maintained tests, that didn't keep pace with changes in the code. It also helps ensure that our code is . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://pxhere.com/en/photo/825760

. . . meaningful, meaning that that any change to the code, will produce a noticeable change in its behavior. Lack of meaning usually comes from code being
redundant, unreachable, or otherwise without any real effect.

Mutation testing . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://www.flickr.com/photos/garryknight/2565937494

. . . puts these two together, by checking that changing the code does indeed change its behavior, and that the unit test suite does indeed notice that change,
and fail. Not all tests have to fail, but each change should make at least one test fail.

However, there are some drawbacks. As Fred Brooks told us back in '86, there's no . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://www.flickr.com/photos/sdasmarchives/4590226412

. . . silver bullet! Besides, they're for killing . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://www.publicdomainpictures.net/en/view-image.php?image=199986

. . . werewolves, not mutants!

The first drawback is that it's rather . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://www.jtfb.southcom.mil/Media/Photos/igphoto/2000888525/

. . . hard labor for the CPU, so it's slow. We surely won’t mutation-test our whole codebase on every save! Maybe over a lunch break for a small system, or
over a night or weekend for a larger one. Fortunately, most tools include an . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://www.maxpixel.net/Progress-Graph-Growth-Achievement-Analyst-Diagram-3078543

. . . incremental mode, so we can test only what has changed since last time. That, maybe we can do on each save, if we save often. Also, its CPU-
intensive nature can really . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://pixabay.com/illustrations/clouds-dollar-symbol-characters-96588/

. . . run up our bills on cloud platforms such as AWS or Azure! (Or aZURE, or whatever.)

It's also . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://www.flickr.com/photos/ell-r-brown/5866767106

. . . not a beginner-friendly technique! It tells us that some particular change to the code made no difference to the tests, but it takes a lot of interpretation to
figure out what a mutant is trying to tell us. Their accent is vurrah strayinge, and they’re almost as incoherent as . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://pixabay.com/vectors/zombie-halloween-dead-monster-521243/

. . . zombies, but with a much bigger vocabulary; they’re not always on about braaaaaaains. They're usually trying to tell us that our code is meaningless, or
our tests are lax, or both, but it can be very hard to figure out how! Even worse, sometimes it's a . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://www.flickr.com/photos/jared422/19116202568

The Boy who
Cried Wolf

. . . false alarm, because the mutation didn't make a test fail, but it didn't make any real difference in the first place. It can still take quite a lot of time and
effort to figure that out.

Now that we've heard the main pros and cons, what does mutation testing actually do? It . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://commons.wikimedia.org/wiki/File:Thrust_with_fault_propagation_fold.svg

. . . mutates copies of our code, hence the name, trying to create test failures, also known as . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://commons.wikimedia.org/wiki/File:Thrust_with_fault_propagation_fold.svg

. . . faults. So, mutation testing is a "fault-based" testing technique. This means it is related to something you might already know about:

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us
Image: https://github.com/Netflix/chaosmonkey/raw/master/docs/logo.png

(used for educational Fair Use purposes)

. . . Chaos Monkey, from Netflix. Just like Chaos Monkey helps Netflix discover error recovery flaws, mutation testing helps us discover test flaws and code
flaws. But the way mutation testing does it, is sort of (CLICK!) upside down from what Chaos Monkey does. Chaos Monkey is best known for . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us
Image: https://github.com/Netflix/chaosmonkey/raw/master/docs/logo.png

(used for educational Fair Use purposes)

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://pixabay.com/vectors/injection-vaccine-shot-medical-40696/ + my text

FAULTS

. . . injecting faults, into Netflix's production network. (CHANGE SLIDE IMMEDIATELY!)

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://commons.wikimedia.org/wiki/File:Edvard_Munch,_1893,_The_Scream,
_oil,_tempera_and_pastel_on_cardboard,_91_x_73_cm,_National_Gallery_of_Norway.jpg

If Netflix's customers don't notice, and the metrics are still good, Netflix knows that their error recovery is working fine. Mutation testing, however, injects . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://www.flickr.com/photos/funkblast/16937812322

 Before After

. . . changes, not necessarily problems. It doesn't know if these changes will create faults. We hope they all will, but that's up to the test suite. It injects
them into . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://pixabay.com/vectors/gene-editing-icon-crispr-icon-2375787/

. . . copies of our code, not our actual network. It does its work in our . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://sservi.nasa.gov/articles/ladee-vibration-testing-complete/

. . . test environment, not production. (Whew!) And if our tests still pass, that doesn't mean that all is well, that means that there is a problem! Remember,
each change to our code should make at least one test fail.

But how does it do all that? Let's peel back . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://pixabay.com/fi/photos/avaruusolento-marsin-vihreä-hirviö-722415/

. . . one layer of the onion, and take a high-level look. First, our chosen tool . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://commons.wikimedia.org/wiki/File:Disassembled-rubix-1.jpg

. . . breaks our code apart into pieces to test, usually our functions. Then, for each function, it tries to find . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://pixabay.com/fi/photos/testi-testaus-kupla-muoto-986935/

. . . that function's tests. If the tool can't find any tests, most will skip this function and probably warn us. Some will use the whole unit test suite, but that's
inefficient and leads to even more false alarms.

Assuming we aren't skipping this function, next the tool . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://www.deviantart.com/polaris-xforce/art/The-Brotherhood-of-Evil-Mutants-390550995 (used by permission)

. . . makes the mutants. To do that, it inspects this function to see how it can be changed. For each way, the tool makes . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://pixabay.com/en/genetic-modification-mutant-mutation-549889/

. . . one mutant, with that one change. Once our tool is done creating all the mutants it can for a given function, it iterates over . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://www.flickr.com/photos/39160147@N03/15074089655

. . . the list. And now we get to the heart of the concept. For each mutant, (PAUSE; SLOW!) derived from a given function, the tool runs the function's unit
tests, but it runs them using the current mutant in place of the original function. (PAUSE!) If a test fails, this is called . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://pixabay.com/id/illustrations/tengkorak-dan-tulang-bersilang-mawar-693484/

. . . “killing the mutant”, and it’s a good thing. It means that our code is meaningful enough that the tiny change that the tool made, to create the mutant,
actually made a difference in the function's behavior, and that our test suite is strict enough to notice that difference, and fail. Then the tool will stop running
tests against that mutant, and move on to the next one. Once this mutant has made one test fail, we don't care how many more it could make fail. Like so
much in computers, we only care about ones and zeroes.

But if a mutant lets all those unit tests pass, that means it has the . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://www.flickr.com/photos/27620885@N02/3082620136

. . . superpower of mimicry, skilled enough to fool our tests. This usually means that our code is meaningless, or our tests are lax, or both — and now it’s up
to us to figure out how!

Now let's peel back another layer, and look at some technical details of how this works. First, our tool . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://commons.wikimedia.org/wiki/File:Abstract_syntax_tree_for_Euclidean_algorithm.svg

function euclid(a, b)
{
 while(b != 0) {
 if(a > b) a -= b;
 else b -= a;
 }
 return a;
}

. . . parses our code, usually into an Abstract Syntax Tree. (I know those boxes are too small to read well, but we don't need to understand this one in detail.)
After our tool makes an AST from our code, then it . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://www.needpix.com/photo/download/667144/cat-tree-climb-young-cat-pet-nature-cat-in-the-tree-domestic-cat-in-the-free

. . . traverses the tree, looking for sub-trees, that represent our functions. After finding them, it handles them as I described before, starting with looking for
each one's tests, but how does it do that? That relies mainly on us developers, either . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

// @mumu tests-for foo
describe("#foo", function() {
 it("turns 3 into 6", function() {
 expect(foo(3)).toEqual(6)
 });

 it("turns 4 into 10", function() {
 expect(foo(4)).toEqual(10)
 });
});

. . . annotating our tests or following some . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

describe("#foo", function() {
 it("turns 3 into 6", function() {
 expect(foo(3)).toEqual(6)
 });

 it("turns 4 into 10", function() {
 expect(foo(4)).toEqual(10)
 });
});

. . . naming convention. This is often supplemented and sometimes even replaced by . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

describe("#foo", function() {
 it("turns 3 into 6", function() {
 expect(foo(3)).toEqual(6)
 });

 it("turns 4 into 10", function() {
 expect(foo(4)).toEqual(10)
 });
});

. . . the tool looking at what unit tests call what functions, though that can get tricky if the function . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

describe("#foo", function() {
 it("turns 3 into 6", function() {
 foo_test_helper(3, 6)
 });

 it("turns 4 into 10", function() {
 foo_test_helper(4, 10)
 });
});

. . . isn't called directly from the test. (PAUSE!) Next the tool makes the mutants. To make them from an AST subtree, it . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://pxhere.com/en/photo/1230969

. . . traverses that subtree, just like it did to the whole thing, but instead of looking for even smaller subtrees to extract, it looks for nodes where it can change
something. Each time it finds one, then for each way it can change that node, it makes a copy of the function's AST subtree, with that node changed, in that
way. For instance, suppose our tool has started traversing the AST I showed earlier, and has gotten down to . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

. . . this not-equal comparison, following those arrows. For each way it could change that node, it would make a fresh copy, of this subtree, with only that
node changed, in that one way. After it's done making as many mutants as it can by mutating that node, it would continue traversing the function subtree,
and do likewise to all further nodes.

So, what kind of changes can it make? There are quite a lot!

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

x + y could become: x - y
x * y
x / y
x ** y

x || y could become: x && y
x ^ y

x | y could become: x & y
x ^ y

Maybe even swap between sets!

It could change a mathematical, logical, or bitwise operator from one to another.

If possible, it could substitute one from a different category. For instance, in JavaScript, we can treat anything as booleans, so x times y could become x and
y.

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

x - y could also become y - x

x / y could also become y / x

x ** y could also become y ** x

When the order of operands matters, it could swap them.

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

x < y

could become:

x <= y
x == y
x === y
x != y
x >= y
x > y

It could change a comparison from one to another.

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

x

could become:

-x
!x
~x

. . . or vice-versa!

It could insert or remove a mathematical, logical, or bitwise negation.

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

if (x === y) foo(z)

or

while (x === y) foo(z)

could become:

foo(z)

It can remove a condition, or a loop control.

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

f(x, y)

could also become:

f(y, x)
f(x)
f(y)
f()
etc.

It could scramble or truncate argument lists of function calls, or . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

function f(x, y) { return x * y; }

could become:

function f(y, x) { return x * y; }
function f(x) { return x * y; }
function f(y) { return x * y; }
function f() { return x * y; }

. . . function declarations.

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

function f(x, y) { /* many lines */ }

could become:
function f(x, y) { return x ; }
function f(x, y) { return y ; }
function f(x, y) { return 0 ; }
function f(x, y) { return MAX_INTEGER; }
function f(x, y) { return "a string" ; }
function f(x, y) { return undefined ; }
function f(x, y) { throw("an error") ; }
function f(x, y) { /* no code here */ }

etc.

It could replace a function’s entire contents with any of the arguments, or a constant, or raising an error, or nothing at all, if the language permits, and
JavaScript does.

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

42
num
num + 42
f(num, 42)
etc.
could become:

-num
1
0
-1
num + 1
num - 1
num / 2
num * 2
num ** 2
sqrt(num)

MAX_INTEGER
MIN_INTEGER
MAX_VALUE
MIN_VALUE
Infinity
'a string'
undefined
null
NaN
etc.

It could change a constant or variable or expression or function call to some other value, even one of a different type, such as changing a number into a, if I
may quote . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://www.flickr.com/photos/herval/50674160

. . . Smeagol, “string, or nothing!”

There are many more, but I trust you get the idea!

From here on, there are no more low-level details I want to add, so let’s finally walk through some examples! We’ll start with an easy one. Suppose we have
a function . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

function power(x, y) {
 return x ** y
}

. . . like so. (PAUSE!) Think about what a mutant made from this might return, since that's what our unit tests would probably be looking at. (PAUSE!)
Mainly it could return results such as . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

x + y
x - y
x * y
x / y
y ** x
(x ** y) / 0
x
y
0
1
-1

0.1
-0.1
MIN_INTEGER
MAX_INTEGER
MAX_VALUE
MIN_VALUE
Infinity
throw(DeliberateError)
"some random string"
nil

. . . any of these expressions or constants, and many more.

Now suppose we had only one test . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

expect(power(2, 2)).
 toEqual(4)

. . . like so. This is a rather poor test, but even so, most of those mutants on the previous slide would get killed by this test, the ones shown . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

x + y
x - y
x * y
x / y
y ** x
(x ** y) / 0
x
y
0
1
-1

0.1
-0.1
MIN_INTEGER
MAX_INTEGER
MAX_VALUE
MIN_VALUE
Infinity
throw(DeliberateError)
"some random string"
nil

. . . here in crossed-out green. The ones returning constants, are very unlikely to match. Subtracting gets us zero, dividing gets us one, returning either
argument alone gets us two, and the error conditions will at least make the test not pass. But . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

x + y
x - y
x * y
x / y
y ** x
(x ** y) / 0
x
y
0
1
-1

0.1
-0.1
MIN_INTEGER
MAX_INTEGER
MAX_VALUE
MIN_VALUE
Infinity
throw(DeliberateError)
"some random string"
nil

. . . addition, multiplication, and exponentiation in the reverse order, all get us the correct answer, and will therefore survive this test.

We know this because when we run our tool, it gives us a report, that looks roughly like . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

function "power" (demo.js:42)
has 4 surviving mutants:

42 - function power(x, y) {
42 + function power(y, x) {

43 - return x ** y
43 + return x + y

43 - return x ** y
43 + return x * y

43 - return x ** y
43 + return y ** x

. . . this. The exact words, format, etc., will depend on which tool we use, but the information should be pretty much the same.

And that is, that if we changed . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

function "power" (demo.js:42)
has 4 surviving mutants:

42 - function power(x, y) {
42 + function power(y, x) {

43 - return x ** y
43 + return x + y

43 - return x ** y
43 + return x * y

43 - return x ** y
43 + return y ** x

. . . the function called power, which is in . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

function "power" (demo.js:42)
has 4 surviving mutants:

42 - function power(x, y) {
42 + function power(y, x) {

43 - return x ** y
43 + return x + y

43 - return x ** y
43 + return x * y

43 - return x ** y
43 + return y ** x

. . . file demo.js, and starts at line 42 . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

function "power" (demo.js:42)
has 4 surviving mutants:

42 - function power(x, y) {
42 + function power(y, x) {

43 - return x ** y
43 + return x + y

43 - return x ** y
43 + return x * y

43 - return x ** y
43 + return y ** x

. . . in any of four different ways, then all its unit tests would still pass, and those four ways are: . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

function "power" (demo.js:42)
has 4 surviving mutants:

42 - function power(x, y) {
42 + function power(y, x) {

43 - return x ** y
43 + return x + y

43 - return x ** y
43 + return x * y

43 - return x ** y
43 + return y ** x

. . . to change line 42 to swap the arguments, or . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

function "power" (demo.js:42)
has 4 surviving mutants:

42 - function power(x, y) {
42 + function power(y, x) {

43 - return x ** y
43 + return x + y

43 - return x ** y
43 + return x * y

43 - return x ** y
43 + return y ** x

. . . change line 43 to change the exponentiation into addition or multiplication, or . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

function "power" (demo.js:42)
has 4 surviving mutants:

42 - function power(x, y) {
42 + function power(y, x) {

43 - return x ** y
43 + return x + y

43 - return x ** y
43 + return x * y

43 - return x ** y
43 + return y ** x

. . . to change line 43 to to swap the operands.

So what is . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

function "power" (demo.js:42)
has 4 surviving mutants:

42 - function power(x, y) {
42 + function power(y, x) {

43 - return x ** y
43 + return x + y

43 - return x ** y
43 + return x * y

43 - return x ** y
43 + return y ** x

. . . this set of surviving mutants trying to tell us? (PAUSE!) A good start to figuring that out, is to ask, how are these mutants surviving? The usual answer is
that they give the same result as the original function. To determine how that happens, we can take a closer look at one mutant, and a test it passes. Let's
start with . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

the change:

43 - return x ** y
43 + return x + y

our test:

expect(power(2, 2)).
 toEqual(4)

. . . the "plus" mutant. Looking at the change, together with our test, makes it pretty clear that this one survives because two plus two equals two to the
second power.

To kill this mutant, we need to make at least one test use arguments such that x to the y is different from x plus y. For instance, we could add a test or
change our test to something like . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

expect(power(2, 4)).
 toEqual(16)

. . . this. All the mutants that our original test killed, this would still kill. Two plus four is six, so this kills the plus mutant just fine. For that matter, two times
four is eight, so this kills the "times" mutant as well. The argument-swapping mutants, however, survive, but we can attack them separately, no need to be a
superhero about it. To do that, we can again either add a test, or slightly tweak our test . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

expect(power(2, 3)).
 toEqual(8)

. . . like so. Three squared is nine, so this kills the argument-swapping mutants. Two plus three is five, and two times three is six, so the "plus" and "times"
mutants stay dead, we don't get any . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://pixabay.com/vectors/zombie-undead-monster-living-dead-156138/ (modified by me)

. . . zombie mutants. With . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

expect(power(2, 3)).
 toEqual(8)

. . . these inputs, the correct operation is the only simple common one that yields the correct answer.

This may make mutation testing sound . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us Image: https://commons.wikimedia.org/wiki/File:Simple_Simon_LCCN2003677693.jpg

. . . simple, but this is a trivial example, so we could easily think up arguments to make all the mutants behave differently from the original. There were lots of
ways to skin that flerken! So let’s look at a more complex example! Suppose we have a function to send a message, . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

function send_message(buf, len) {
 var sent = 0;
 while(sent < len) {
 var now = send_bytes(buf + sent,
 len - sent);
 sent += now;
 }
 return sent;
}

. . . like so. This function, send_message, sends as much as send_bytes can handle in one chunk, over and over, picking up where it left off, until the
message is all sent.

A mutation testing tool could make lots and lots of mutants from this, but the one I want to show you is . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

 function send_message(buf, len) {
 var sent = 0;
- while(sent < len) {
 var now = send_bytes(buf + sent,
 len - sent);
 sent += now;
- }
 return sent;
 }

. . . this, an example of removing a loop control. Now suppose that this mutant survives our test suite, consisting mainly of . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

expect(send_message(msg, size)).
 toEqual(size)

. . . this. (PAUSE!) There's a bit more that I'm not going to show you quite yet, dealing with setting the size and creating the message. Even without seeing
that code, what does the survival of that non-looping mutant tell us? (PAUSE!)

If a mutant that only goes through . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

function send_message(buf, len) {
 var sent = 0;
 while(sent < len) {
 var now = send_bytes(buf + sent,
 len - sent);
 sent += now;
 }
 return sent;
}

. . . that while-loop once, acts the same as our normal code, as far as our tests can tell, that implies that our tests are only making our code go through that
while-loop once. So what does that mean? (You'll find that interpreting mutants involves a lot of asking yourself what something means! Recursively!)

It means that we’re not testing sending a message larger than send_bytes can handle in one chunk! The most likely cause is that we simply didn’t test with a
big enough message. For instance, . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

in module Network:

MaxChunkSize = 10_000;

in test_send_message:
msg = 'foo';
size = msg.length;
other setup, eg, stub send_bytes
expect(send_message(msg, size)).
 toEqual(size);

. . . suppose send_bytes can handle 10,000 bytes in one chunk, but, we’re only testing with a three byte message! (PAUSE!)

The obvious fix is to use a message larger than our maximum chunk size. To construct one, we can just . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

in module Network:

MaxChunkSize = 10_000;

in test_send_message:

size = Network.MaxChunkSize + 1;
msg = "x" * size;
other setup, eg, stub send_bytes
expect(send_message(msg, size)).
 toEqual(size);

. . . take the size, add one, and construct that big a message.

But perhaps we DID test with the largest permissible message, out of a set of predefined messages or at least message sizes. For instance, . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

in module Message:

SmallMsg = msg_class(SmallMsgSize);
LargeMsg = msg_class(LargeMsgSize);

in test_send_message:

size = Message.LargeMsgSize;
msg = new LargeMsg("a" * size);
other setup, eg, stub send_bytes
expect(send_message(msg, size)).
 toEqual(size);

. . . here we have Small and Large message sizes. We tested with a Large, and yet, the mutant survived! In other words, we're still sending the whole
message in one chunk. What is the non-looping mutant trying to tell us now? (PAUSE!)

It’s trying to tell us that a version of send_message with the looping removed will do the job just fine. If we also remove all the other stuff we need only to
support the looping, then it boils down to . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

function send_message(buf, len)
{
 return send_bytes(buf, len);
}

. . . this. (PAUSE!) Now it’s pretty clear: the entire send_message function may well be redundant, so we can just use send_bytes directly! It might not be,
because, in real-world code, there may be some logging, error handling, and so on, needed in send_message, but at least the looping was redundant.
Fortunately, when it's this kind of problem, with unreachable or redundant code, the solution is clear and easy, just chop out the extra junk that the mutant
doesn't have, and anything else that makes redundant.

To summarize, mutation testing is a powerful technique to . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

. . . ensure that our code is meaningful and (CLICK!) our tests are strict. It's (CLICK!) easy to get started with, in terms of setting up most of the tools and
annotating our tests if needed (which may be tedious but at least it's easy), but it's (CLICK!) not so easy to interpret the results, nor is it (CLICK!) easy on the
CPU. Even if these drawbacks mean it's not a good fit for our current projects, though, I still think it's just (CLICK!) a really cool concept . . . in a geeky kind
of way.

If I've EDUCATED you enough to INSPIRE you to CONNECT with your inner mutant, so you'd like to try mutation testing for yourself . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

😀 Ensures our code is meaningful

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

😀 Ensures our code is meaningful
😀 Ensures our tests are strict

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

😀 Ensures our code is meaningful
😀 Ensures our tests are strict

😀 Easy to get started with

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

😀 Ensures our code is meaningful
😀 Ensures our tests are strict

😀 Easy to get started with
😩 Difficult to interpret results

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

😀 Ensures our code is meaningful
😀 Ensures our tests are strict

😀 Easy to get started with
😩 Difficult to interpret results

😩 Hard labor on the CPU

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

😀 Ensures our code is meaningful
😀 Ensures our tests are strict

😀 Easy to get started with
😩 Difficult to interpret results

😩 Hard labor on the CPU
😎 Fascinating concept! 🤓

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

Android:
C:
C/C++:
C#/.NET/Mono:
Clojure:
Elixir:
Erlang:
FORTRAN-77:
Go:
Haskell:
Java:

JavaScript:
PHP:
Python:
Ruby:
Rust:
Scala:
Swift:
Anything on LLVM:

mdroid+
mutate.py, SRCIROR
accmut, dextool, MuCPP, Mutate++, mutate_cpp
nester, NinjaTurtles, Stryker.NET, VisualMutator
mutant
exmen, mutation, exavier
mu2
Mothra (written in mid 1980s!)
go-mutesting
fitspec, muCheck
jumble, major, muJava, pit, and many more

stryker, grunt-mutation-testing
humbug, infection
cosmic-ray, mutmut, xmutant
mutant, mutest, heckle
mutagen
scalamu, stryker4s
muter
llvm-mutate, mull

. . . here's a list of tools for some popular languages and platforms . . . and some others; I doubt many of you are doing FORTRAN-77 these days. I'll talk a
bit so you have time for pictures. Just be aware that some of these tools are outdated; I don't know or follow quite all of these languages and platforms. As
for JavaScript, the only one I'm aware of is Stryker; there used to be one that was a plugin for the Grunt task runner, but that project has shut down and its
code has been migrated into Stryker. Anybody need more time for pictures?

Lastly, a couple shoutouts, first to . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

Thanks to Toptal and their Speakers Network!

https://toptal.com/#accept-only-candid-coders

Images: Toptal logo, used by permission

. . . Toptal, a consulting network I'm in, whose Speakers Network helped me prepare and practice this presentation. (Please use that referral link if you want
to hire us or join us.)

And second, many thanks to . . .

https://twitter.com/davearonson
http://www.Codosaur.us
https://www.toptal.com/#accept-only-candid-coders
https://toptal.com/#accept-only-candid-coders

@davearonsonwww.Codosaur.us

Thank you Markus Schirp!

https://github.com/mbj
Images: Markus, from his Github profile

. . . Markus Schirp, who created mutant, a Ruby mutation testing tool, and has been very willing to answer my questions and critique this presentation.

And now, if you have any questions, . . .

https://twitter.com/davearonson
http://www.Codosaur.us

@davearonsonwww.Codosaur.us

https://www.Codosaur.us
T.Rex-2020@Codosaur.us
@davearonson (Twitter)

Slides: bit.ly/kill-mutants-JSConfHI-2020

. . . we're not supposed to do Q&A, but we can talk over lunch, and if you think of anything later, I'll be around for the rest of the conference, or if it's too late,
there's my contact information up there, and of course I have cards. Now let's go get some lunch!

https://twitter.com/davearonson
http://www.Codosaur.us
https://www.Codosaur.us
mailto:T.Rex-2020@Codosaur.us

@davearonsonwww.Codosaur.us

var killed;
for(meth of our_functions) {
 for(mutant of make_mutants(meth)) {
 killed = false;
 for(test of meth.tests) {
 killed = test.fails_with(mutant);
 if(killed) break;
 }
 if(!killed) report(mutant);
 }
}

https://twitter.com/davearonson
http://www.Codosaur.us

