
Tight Genes:
Intro to Genetic Algorithms

by Dave Aronson
T.Rex-2025@Codosaur.us

twitter.com/DaveAronson
linkedin.com/in/DaveAronson

github.com/CodosaurusLLC/tight-genes

NOTE TO SELF: click on timer to reset it at the start
Current time: ~37, speaking medium/fast, with lots of ad-libs.
DDEU wants 45, leave ~5-10 for Q&A, so net 35-40, seems about right, SLOW DOWN but use fewer ad-libs.

Speaker notes

Sveiki, Vilniau!

(Hello, Vilnius!)
@davearonson Image: standard emoji www.Codosaur.us

SveikEE VILnio!

Speaker notes

Aš esu Dave Aronson,

(I'm Dave Aronson,)
@davearonson Image: me speaking at JSConf Hawai'i 2020! www.Codosaur.us

AHSH EHsoo Dave Aronson,

Speaker notes

T. Reksas iš Codosaurus,

(the T. Rex of Codosaurus,)
@davearonson Image: my company logo! www.Codosaur.us

teeRANnoSOWrus RRREKsas ish Codosowrus,

Speaker notes

ir atskridau čia

 . . .
(and I flew here)

@davearonson Image: standard emoji www.Codosaur.us

ir atskrihDOH cheh

Speaker notes

ant savo augintinio pterodaktilio

(on my pet pterodactyl)
@davearonson

Images: https://pixabay.com/vectors/dinosaur-tyrannosaurus-t-rex-6273164/
and https://pixabay.com/vectors/bird-flying-wings-dinosaur-ancient-44859/ www.Codosaur.us

ahnt sahvo auGIHNtihnyo PterodakTIHlyo

Speaker notes

kad išmokinčiau jus apie

(to teach you about)
@davearonson Image: standard emoji www.Codosaur.us

kad ishmoKIHNchyo YOOS ah-PEE-eh

Speaker notes

Genetiniai Algoritmai.

(Genetic Algorithms.)
@davearonson Image: https://pixabay.com/vectors/genetic-testing-gene-panel-genetics-2316642 www.Codosaur.us

geNETinee AlgoRITHmai.

Speaker notes

Visgi . . .

(But . . .)
@davearonson Image: standard emoji www.Codosaur.us

VIZgih . . .

Speaker notes

toliau tesiu pasakojima angliškai.

(I will do it in English.)
@davearonson Image: standard emoji www.Codosaur.us

tohlYO TESSu PassaKoimah AHNglishkay.

So . . .

Speaker notes

@davearonson Image: https://www.pexels.com/photo/pensive-girl-with-school-notebook-thinking-16117755/ www.Codosaur.us

. . . what are genetic algorithms in the first place? They are . . .

Speaker notes

@davearonson Image: https://icon-icons.com/download/49925/PNG/512/ www.Codosaur.us

... optimization heuristics, . . .

Speaker notes

WAT?!
@davearonson www.Codosaur.us

. . . which is fancy-talk for . . .

Speaker notes

Optimization Heuristic:
shortcut to find

"good enough" solutions
(ideally the best,
but OK if not).

@davearonson www.Codosaur.us

. . . shortcuts to find solutions to hard problems. Ideally they'll find the best solution, but in reality we usually have to
settle for something "good enough", due to constraints like time or money.

There are many kinds of optimization heuristics, but genetic algorithms are uniquely inspired by . . .

Speaker notes

@davearonson Image: https://www.freepik.com/free-vector/human-workers-evolution-silhouettes_725773.htm www.Codosaur.us

. . . real-world biological evolution, mainly the principles of survival of the fittest, random combination of old sets of genes
(no, not like I'm wearing) into one new set, and random mutation.

The history goes back to 1950, when . . .

Speaker notes

Alan
Turing

@davearonson Image: https://cdn.britannica.com/81/191581-050-8C0A8CD3/Alan-Turing.jpg www.Codosaur.us

. . . Alan Turing, as in Turing Test, Turing Machine, and so on, proposed a "learning machine" in which he thought that
the mechanism of learning would be similar to evolution. Nothing much ever came of that, and it took a few decades for
genetic algorithms in general to get some traction. The first commercial product based on genetic algorithms, a
mainframe toolkit for . . .

Speaker notes

@davearonson Image: https://pxhere.com/en/photo/267871 www.Codosaur.us

. . . industrial processes, came out in the late 1980's, from General Electric. These days, MATLAB and such tools have
some genetic algorithm facilities built-in, and most major programming languages have genetic algorithm libraries
available. However, the actual uses of genetic algorithms remain mostly hidden, and in my opinion frankly rather boring,
used by companies in their internal industrial processes, logistics, scheduling, and so on.

But once in a while, they do get used for something more interesting, and more publicly known. Most famously, in 2005
. . .

Speaker notes

@davearonson Image: https://www.nasa.gov/sites/default/files/thumbnails/image/nasa-logo-web-rgb.png www.Codosaur.us

. . . NASA used a genetic algorithm to design an . . .

Speaker notes

ST5 antenna,
and

US quarter
for scale

@davearonson Image: https://www.jpl.nasa.gov/nmp/st5/IMAGES/st5-antenna.jpg www.Codosaur.us

. . . antenna for the ST5 series of satellites, launched in 2006. (No, that's not just a paperclip bent up by someone
fidgeting in a boring meeting.) The NASA Jet Propulsion Laboratory website says: "Its unusual shape is expected
because most human antenna designers would never think of such a design." And that is one of the great advantages
of this approach.

So, how do genetic algorithms work? They consist of a simple series of steps:

Speaker notes

@davearonson

Initialize

www.Codosaur.us

First, we create an initial population of candidates. In Genetic Algorithm terms, these are called "chromosomes", but
since most living beings contain many chromosomes in each and every cell, I don't like that term, I think it leads to
confusion, so I'm just going to say "candidates". I've also heard them called individuals, solutions, or phenotypes, to use
another actual genetic term, but most people don't know that word, so I'll skip that one too.

The next step is to . . .

Speaker notes

@davearonson

Initialize

Assess

www.Codosaur.us

. . . assess the "fitness" of each candidate, according to whatever criteria we want to apply. We do it here mainly
because it supplies the data usually used in the next step, which is to ask, are we . . .

Speaker notes

@davearonson

Initialize

Assess

Done?

www.Codosaur.us

. . . done yet? This is usually based on the fitness, but could be based on other criteria, or a combination. If we're not
done, then next we . . .

Speaker notes

@davearonson

Initialize

Assess

Done?

Select
www.Codosaur.us

. . . select some candidates to breed the next generation. This is also usually based on the fitness, to simulate survival
of the fittest.

After that, as you may have guessed, we use those candidates we just selected . . .

Speaker notes

@davearonson

Initialize

Assess

Done?

Select Breed
www.Codosaur.us

. . . to breed a new population. Some of the previous population, especially the fittest ones, may be carried over into this
new population, but usually not.

Next is a very important but easily forgotten step, which is to . . .

Speaker notes

@davearonson

Initialize

Assess

Done?

Select Breed

Mutate

www.Codosaur.us

. . . mutate those new candidates, for more diversity in the gene pool.

Finally, we . . .

Speaker notes

@davearonson

Initialize

Assess

Done?

Select Breed

Mutate

www.Codosaur.us

. . . go back to step 2, assessing their fitness. This sequence could be represented at a high level with some rather
simple code, like so:

Speaker notes

@davearonson

how_many = 10 # or however big we want
pop = initial_pop(how_many)
evaluate(pop)
while not done?(pop)
 breeders = select_breeders(pop)
 pop = breed(breeders, how_many)
 mutate(pop)
 evaluate(pop)
end

www.Codosaur.us

This code is in Ruby. I chose that to reduce boilerplate overhead, and because it reads so close to plain English, so
even if you don't know Ruby, I'm confident you'll understand the ideas, and maybe even the actual code.

Now let's take a closer look at what goes on in each step, by working through an example.

Speaker notes

@davearonson

Initialize

Assess

Done?

Select Breed

Mutate

www.Codosaur.us

First we create an initial population of candidates. But what is a candidate, and how do we create one? These are
different solutions to some problem, usually represented as different instances of the same data structure. They could
be any data structure we want, so long as we can evaluate their fitness, combine old ones to make a new one, and
mutate them. The simplest common type of candidate is . . .

Speaker notes

01001000
01100101
01101100
01101100
01101111
00100000
01110111
01101111
01110010
01101100
01100100
00100001

@davearonson www.Codosaur.us

. . . a simple string of bits. This will do fine for candidates that consist of a simple series of yes/no decisions. This may
sound simplistic, but there is a huge class of problems that boil down to this, called . . .

Speaker notes

Knapsack /
Rucksack /
Backpack /
Whatever!

@davearonson Image: https://publicdomainvectors.org/en/free-clipart/Rucksack-vector-image/9910.html www.Codosaur.us

. . . knapsack problems. The canonical example is that you have a knapsack, and many things you want to carry in it,
but they won't all fit, so or the total weight is more than you can carry, or some such similar constraint, or combination of
constraints. So you want to find the combination of items, that will fit the constraints, and has the maximum value. That
could be the literal cash value, or something more metaphorical. To look at a concrete example, suppose we know . . .

Speaker notes

@davearonson Image: standard emoji www.Codosaur.us

. . . a farmer, with a smallish truck, and he needs to decide what to take to market each week. And on this farm he has .

. .

Speaker notes

@davearonson Images: standard emoji www.Codosaur.us

. . . some cows. (E-I-E-I-O!) So among the things he can take to market are:

Speaker notes

@davearonson Images: standard emoji plus https://www.rawpixel.com/image/6130389/ www.Codosaur.us

. . . cows, milk, cheese, butter, ice cream, meat, and leather. For the sake of simplicity, we won't differentiate between
price and profit, nor dairy versus meat cows, and he can only take a set amount of each item, and always has that
amount on hand. His truck has room to take all the items, but it can only carry so much weight, so that's our constraint.
His choices are as follows:

Speaker notes

What Unit Qty Pounds Value
Cow cow 1 1,500 $2,000
Milk 1-gal jug 200 1,720 $800
Cheese 5-lb wheel 200 1,000 $12,000
Butter 1-lb block 1,000 1,000 $3,000
Ice Cream 1-gal tub 200 1,000 $2,000
Meat side 4 1,280 $8,000
Leather hide 20 1,100 $6,000

TOTAL WEIGHT: 8,600
@davearonson www.Codosaur.us

You don't need to remember all that, just notice that it totals 8,600 pounds. But, his truck's suspension can only handle
two tons, in other words, 4,000 pounds.

So let's see what happens if we use a genetic algorithm to determine a "good enough" truckload. First we need a way
to represent each candidate. In code, we could represent them as a class, and create one randomly, like so:

Speaker notes

@davearonson

class Truckload
 attr_reader :contents
 def initialize()
 @contents = rand(128)
 end
end

www.Codosaur.us

Whoa, that looks like we're just making a random number! That's right! Making a random number from 0 to 2^7-1, gives
us a random 1 or 0 for each of our seven possible items. We could get as complex as we want in this function, like
dictating a minimum or maximum number of items, but let's keep it simple.

To create an initial population, we can just create a bunch of candidates and stuff them into an array, . . .

Speaker notes

@davearonson

def self.initial_population(how_many)
 population = []
 for i in 1..how_many
 population.append(self.new)
 end
 return population
end

www.Codosaur.us

. . . like so. (This could actually be done in much more idiomatic Ruby, so those of you who do know Ruby, please don't
scold me for that, I'm just trying to keep it easily understandable by people who don't know Ruby.) So if we create a
population of ten Truckloads, we might wind up with a list like this:

Speaker notes

Cow Milk Cheese Butter Ice Cream Meat Leather
Y N N Y N Y Y
N N N Y Y N N
N Y N N N Y N
N Y Y N Y N N
Y Y Y N Y Y N
Y Y N Y N N N
Y N N Y N Y N
Y Y N N N N N
N N Y Y Y Y Y
N N Y N N Y N

@davearonson www.Codosaur.us

Why ten? Because that's what fits on the screen in a decently readable size. If I were doing this for real, I might use a
hundred, a thousand, a million, or even more.

We can get from random numbers to those combinations, by iterating over the bits and seeing which are turned on, but
in the interests of time, I'll handwave over those details. Next, we . . .

Speaker notes

@davearonson

Initialize

Assess

Done?

Select Breed

Mutate

www.Codosaur.us

. . . assess how "fit" each of these truckloads is. We do this with something called a "fitness function". (Surprise!) Just
like how biological creatures might be perfectly fit for one environment but a lousy fit for another, this should reflect how
fit a candidate is for some particular purpose. In this case, we already know we want the total cash value, BUT, any load
that's too heavy for the truck, is worthless. In Ruby, that would look like this:

Speaker notes

@davearonson

def fitness()
 items = (0...ITEMS.count).
 select { |idx| bit_on?(idx) }.
 map { |idx| ITEMS[idx] }
 weight = items.map(&:weight).sum
 if weight > 4000
 return 0
 else
 return items.map(&:value).sum
 end
end

www.Codosaur.us

We decode which items we want to take (abstracting away the actual bit-checking again for simplicity), then sum up
their weights. If that exceeds the truck's capacity, we return zero, else we sum up their values.

Again, we could get as complex as we want in this function, and NASA's antenna fitness function certainly must have
been. For instance, we could take into account the costs of refrigerating or freezing any items that need it.

If we run this fitness function on our population, and sort on fitness descending, to make it easy to find the best, we get
this:

Speaker notes

Cow Milk Cheese Butter Ice Cream Meat Leather Fitness
N N Y N N Y N 20,000
N Y Y N Y N N 14,800
Y N N Y N Y N 13,000
N Y N N N Y N 8,800
N N N Y Y N N 5,000
Y Y N N N N N 2,800
Y N N Y N Y Y 0
Y Y Y N Y Y N 0
Y Y N Y N N N 0
N N Y Y Y Y Y 0

@davearonson www.Codosaur.us

Remember that 20,000 figure.

So now that we've assessed their fitness, we . . .

Speaker notes

@davearonson

Initialize

Assess

Done?

Select Breed

Mutate

www.Codosaur.us

. . . check if we're done. So what are our criteria? The function can be simple, but it can take some thinking to figure out
what the function should do. With a knapsack problem, a good solution, especially the best, can be made totally
worthless by adding just one more . . .

Speaker notes

@davearonson Image: https://images.squarespace-cdn.com/content/v1/5dace41dae7efb0296d47681/1617070720932-SD9B9QT535LA555Q2U19/python.png (used for edu fair use) www.Codosaur.us

. . . waffer-theen item, and thereby exceeding the constraints. So, we're going to record the best we've seen, and stop if
we don't see anything better within 100 generations.

Why 100? Pretty much random. It seems like enough for a good chance for improvement, and since what we're doing
is so simple, and our population is so small, using lots of generations isn't very slow. In Ruby, that would look like this:

Speaker notes

@davearonson

@@best_combo = self.new(0)
@@generations = 0

def self.done?(population)
 @@generations += 1
 better = population.
 select { |c| c.fitness > @@best_combo.fitness }
 if better.any?
 @@best_combo = better.sort_by(&:fitness).last
 @@generations = 0
 return false
 else
 return @@generations >= 100
 end
end

www.Codosaur.us

When this code is initially run, to define the function, we set the initial best combo as empty, and we set how many
generations it's been since we saw that, as zero, both as class variables. When the function is called, we increment the
number of generations, look at the fitness of the current candidates, and select the ones with a better fitness than our
benchmark. If there are any better candidates, we make the fittest one our new benchmark, reset the generation
counter, and return false. Else if it's been 100 generations since the best one, we return true, else we return false.

Again, we can get as complex as we want, not only in checking the maximum fitness, but we could look at other
stopping criteria, like the average or minimum fitness, or achieving some specific level of maximum fitness, some
maximum number of generations, or amount of time, (whether clock time or CPU or whatever), or let the user click a
STOP button, or many other ways, or a combination of ways.

Since we're not done, the next step is to . . .

Speaker notes

@davearonson

Initialize

Assess

Done?

Select Breed

Mutate

www.Codosaur.us

. . . select some candidates to breed the next generation. The obvious way is to take the top two most fit, like so:

Speaker notes

@davearonson

def self.select_breeders(population)
 return population.
 sort_by(&:fitness).
 reverse.
 take(2)
end

www.Codosaur.us

We take the population, sort them by fitness in descending order, and take the first two. Out of our current population,
that would choose:

Speaker notes

Cow Milk Cheese Butter Ice Cream Meat Leather Fitness

N N Y N N Y N 20,000

N Y Y N Y N N 14,800

@davearonson www.Codosaur.us

these two. As usual, we also could get more complicated, and there are some more complex common alternatives, that
we will look into later.

We could also take more than two, whether to combine more than two at once or to breed all pairs in that set, or larger
subsets, such as all trios out of a set of five breeders.

Now that we've chosen our breeders, next we . . .

Speaker notes

@davearonson

Initialize

Assess

Done?

Select Breed

Mutate

www.Codosaur.us

. . . breed them. The usual way is called crossover. This consists of taking the data points from one parent, up to some
randomly chosen crossover point, then switching to the other parent. In Genetic Algorithm terms, each place in the list
is called a "gene" (that's where the name comes from), and the actual value there is called an allele. In Ruby, that could
look like this:

Speaker notes

@davearonson

def self.breed(p1, p2)
 cross_point = rand(ITEMS.count + 1)
 list = (0..ITEMS.count).
 map { |index|
 parent = index < cross_point ? p1 : p2
 parent.contents & (1 << index)
 }.
 sum
 return self.new(list)
end

www.Codosaur.us

We establish the crossover point for each new candidate, as a random number between zero and how many items there
are, inclusive. Then we iterate through the list of items. If we haven't yet hit the crossover point, we get the decision for
that item from the first parent, else we get it from the other parent. This means that it could be all copied from one
parent or the other, or it could switch at some point. We could just copy the sets of bits, but the code for that would be
more complex and non-portable than I want to explain here.

As usual, we could get as complex as we want, like making some crossover points more or less likely, or even
mandatory or forbidden. But we're going to keep it simple.

If we use this function once, with a crossover point of 3, so we take 3 values from the first parent, and the rest from the
other, that would get us a result like this:

Speaker notes

Cow Milk Cheese Butter Ice Cream Meat Leather

N N Y N N Y N
+

N Y Y N Y N N
=

N N Y N Y N N

@davearonson www.Codosaur.us

But this is just one of ten results, because we're making a whole new population, like so:

Speaker notes

@davearonson

def self.new_population(p1, p2, how_many)
 population = []
 for i in 1..how_many
 population.append(self.breed(p1, p2))
 end
 return population
end

www.Codosaur.us

This is just like how we created the initial population, except that instead of each candidate being made from scratch,
they're the product of breeding our chosen breeders. The whole list might look like this:

Speaker notes

Cow Milk Cheese Butter Ice Cream Meat Leather
N N Y N Y N N
N Y Y N Y N N
N N Y N Y N N
N N Y N N Y N
N N Y N Y N N
N N Y N Y N N
N N Y N N N N
N N Y N Y N N
N N Y N Y N N
N N Y N N Y N

@davearonson www.Codosaur.us

Lots of family resemblance there, eh? None of these loads include a cow, butter, or leather, and they all include
cheese. That's because both of our two breeders were like that. Or in Genetic Algorithms terms, both chromosomes
had the same alleles for each of those genes. If we were to just continue breeding the fittest of each generation, we
wouldn't ever see any loads including a cow, butter, leather, or no cheese, but we fix that in the next step, which is to . . .

Speaker notes

@davearonson

Initialize

Assess

Done?

Select Breed

Mutate

www.Codosaur.us

. . . mutate them. Again, I'm going to keep it very simple, and give each gene a 1 in 4 chance of flipping. In code, that
looks like this:

Speaker notes

@davearonson

def maybe_mutate()
 (0..ITEMS.count).each do |index|
 if rand(4) == 0
 @contents ^= (1 << index)
 end
 end
end

www.Codosaur.us

We iterate through the item numbers, and for each one, if a random number from zero to three is a zero, we flip that bit.
Again, we could get as complex as we want, like having some genes more or less likely to mutate than others, or having
some minimum or maximum number of mutations per candidate, or all kinds of other options. If we run this mutation
function on these new candidates, we might wind up with something like this:

Speaker notes

Cow Milk Cheese Butter Ice Cream Meat Leather
N Y N Y N N Y
N N Y Y N N N
Y N Y Y Y Y N
Y Y Y Y Y Y N
Y Y Y Y N N Y
N Y N Y N N Y
Y Y N Y N N Y
N N Y N Y N N
Y N N Y Y N N
N N Y N Y N N

@davearonson www.Codosaur.us

. . . where green means that it changed. You can see that we now DO have some truckloads that include a cow, butter,
or leather, or no cheese. Now we go back to . . .

Speaker notes

@davearonson

Initialize

Assess

Done?

Select Breed

Mutate

www.Codosaur.us

. . . assessing the fitness of these new candidates, and we get this:

Speaker notes

Cow Milk Cheese Butter Ice Cream Meat Leather Fitness
N N Y Y N N N 15,000
N N Y N Y N N 14,000
N N Y N Y N N 14,000
N Y N Y N N Y 9,800
N Y N Y N N Y 9,800
Y N N Y Y N N 7,000
Y Y Y Y N N Y 0
Y Y Y Y Y Y N 0
Y N Y Y Y Y N 0
Y Y N Y N N Y 0

@davearonson www.Codosaur.us

Oh noes! Our maximum fitness actually went down! As you may recall, our previous best one scored 20,000. But don't
worry, as you may recall from our "are we done yet" function, we hang onto the best one, and just try to outdo it, so we
haven't lost it.

But that's not really the best approach. Remember how I said that sometimes the fittest members of a population might
be carried over into the next one? If I had carried over the fittest one, the maximum fitness would never go down, so the
"are we done" function could have been a bit simpler, and we'd be done a bit faster. But, I didn't think of it until I had
already made all the slides for this talk, and I didn't want to redo them. Also, I think this version is still worth exploring, to
make the point that the fitness can go down and then come back up. So let's keep going.

The next generation might look like this:

Speaker notes

Cow Milk Cheese Butter Ice Cream Meat Leather Fitness
N Y Y N N Y N 20,800
N N Y N N Y N 20,000
N N Y N N Y N 20,000
N N N N N Y Y 14,000
N N Y N N N N 12,000
N Y N N Y N N 2,800
Y N Y Y N Y N 0
Y Y Y N Y Y N 0
N Y Y N Y Y N 0
N Y Y Y N Y N 0

@davearonson www.Codosaur.us

. . . a small improvement over our prior best! So, we set that top one as our benchmark, and reset the counter of
generations since we saw it. If we let this run to completion, we might wind up with something like this:

Speaker notes

Cow Milk Cheese Butter Ice Cream Meat Leather Fitness
N N Y N N Y Y 26,000
N N Y Y N N Y 21,000
N Y N N Y Y N 10,800
Y N N N N N Y 8,000
N N N N N Y N 8,000
N N N Y Y N N 5,000
N Y N N N N N 8,00
N Y N N N N N 8,00
Y Y N Y N N Y 0
Y Y N Y Y Y Y 0

@davearonson www.Codosaur.us

. . . with our best truckload scoring 26,000, made up of cheese, meat, and leather.

So that's one complete run of a genetic algorithm. If we wanted to check whether that was the best that this algorithm
could produce, we could just run it again, as many times as we like, within reason, since it's so much faster than brute
force. Okay, maybe writing all this code is not so much faster when we've only got seven items, and such simple
criteria, but if we had to choose among many more items, with more complex criteria, for many truckloads a day,
creating a genetic algorithm might well be worthwhile.

Now, suppose we want to evolve solutions to a different huge class of problems: . . .

Speaker notes

@davearonson Image: https://xkcd.com/399/ www.Codosaur.us

. . . Traveling Salesman problems. The canonical example is that you're literally a traveling salesman, and you want to
find the shortest route to visit a list of cities. Realistically, we may want to include other factors, such as the time or
money it takes to get there, which may not be proportional to the distance, and the expected time to spend in each city.
But to keep this example simple, we'll just look at the distance.

Our list of cities will be the capitals of mainland Europe, west of Germany. In alphabetical order, that's:

Speaker notes

@davearonson Image: modified from https://www.mapchart.net/europe.html www.Codosaur.us

Amsterdam, Andorra la Vella, Brussels, Lisbon, Luxembourg, Madrid, Monte Carlo, and Paris. We have the . . .

Speaker notes

To
From

AND BRU LIS LUX MAD MTC PAR

AMS 1357 210 2233 417 1773 1421 502
AND - 1162 1232 1178 613 653 862
BRU - - 2038 213 1577 1200 307
LIS - - - 2153 625 1838 1739
LUX - - - - 1691 1041 386
MAD - - - - - 1288 1278
MTC - - - - - - 956

@davearonson www.Codosaur.us

. . . distances between them, as shown here in kilometers. This is the minimum driving distance according to Google
Maps, and to keep things simple we'll assume it's the same in either direction.

So let's dive back into our process. That starts with . . .

Speaker notes

@davearonson

Initialize

Assess

Done?

Select Breed

Mutate

www.Codosaur.us

. . . creating an initial population. So how do we create a route? It could be done quite easily, like this:

Speaker notes

@davearonson

class Route
 CITIES = %w(AMS AND BRU LIS LUX MAD MTC PAR)

 attr_reader :stops
 def initialize(stops=CITIES.shuffle)
 @stops = stops
 end
end

www.Codosaur.us

Again we're going to make a class, this time called Route, with the list of city abbreviations as a constant. If we create
ten of these and put them in an array, it might look like this:

Speaker notes

1st 2nd 3rd 4th 5th 6th 7th 8th
AND MAD AMS LUX PAR BRU MTC LIS
MTC PAR LUX AND MAD LIS AMS BRU
MAD LUX BRU AMS LIS AND MTC PAR
AND PAR LUX BRU AMS LIS MAD MTC
LIS LUX MTC AMS AND BRU PAR MAD
BRU LUX LIS PAR AND MAD MTC AMS
AND LUX PAR MTC BRU MAD AMS LIS
LUX BRU AND MAD PAR LIS AMS MTC
AND AMS MTC PAR LIS BRU LUX MAD
PAR MAD AMS BRU AND MTC LIS LUX

@davearonson www.Codosaur.us

So that's the Initialize step done. Now we have to . . .

Speaker notes

@davearonson

Initialize

Assess

Done?

Select Breed

Mutate

www.Codosaur.us

. . . determine how fit each route is. The measure we have is better when smaller and worse when larger, but that's
easy to take care of. We can subtract it from a constant, divide a constant by it, or all kinds of other solutions. I decided
to subtract the total distance of each one from . . .

Speaker notes

@davearonson

WORST_ROUTE = Route.new(%w(AMS
 LIS
 LUX
 MAD
 BRU
 MTC
 PAR
 AND))

this works out to 12_029
WORST_DISTANCE = WORST_ROUTE.fitness()

www.Codosaur.us

. . . the fitness of the worst route I could easily construct manually. I started in Amsterdam, and then did the opposite of
the usual heuristic, repeatedly going to the furthest unvisited city, until I had included them all, then back to Amsterdam.
The fitness function is fairly straightforward:

Speaker notes

@davearonson

def fitness = WORST_DISTANCE - total_distance

def total_distance
 stops.
 each_cons(2).
 to_a.
 map { |src, dst| distance(src, dst) }.
 sum +
 distance(stops.first, stops.last)
end

www.Codosaur.us

. . . we calculate the total distance by taking the stops, extracting each consecutive pair, then we map each pair to its
distance by calling a function that looks up the distance in that table (but in the interests of time I'll hand-wave over that
code), add them all up, and finally add the distance back to the starting point. Then to get the fitness we finally subtract
that total distance from the worst distance.

If we run this on our current population, and sort on fitness descending, we get:

Speaker notes

1st 2nd 3rd 4th 5th 6th 7th 8th Fit
AND PAR LUX BRU AMS LIS MAD MTC 5559
MTC PAR LUX AND MAD LIS AMS BRU 4628
AND MAD AMS LUX PAR BRU MTC LIS 4263
MAD LUX BRU AMS LIS AND MTC PAR 3563
BRU LUX LIS PAR AND MAD MTC AMS 3530
LIS LUX MTC AMS AND BRU PAR MAD 2685
PAR MAD AMS BRU AND MTC LIS LUX 2576
LUX BRU AND MAD PAR LIS AMS MTC 2329
AND AMS MTC PAR LIS BRU LUX MAD 2001
AND LUX PAR MTC BRU MAD AMS LIS 1494

@davearonson www.Codosaur.us

. . . this. The best route of this generation is 5_559 km shorter than the worst route I could easily construct manually,
and the worst of this generation is still 1_494 km shorter than that same worst route. So now we can use this information
to decide . . .

Speaker notes

@davearonson

Initialize

Assess

Done?

Select Breed

Mutate

www.Codosaur.us

. . . are we done? What are our criteria? For now I'm going to stick with the idea of declaring a winner if it hasn't been
outdone in 100 generations, so of course we're not done on the first pass. The code . . .

Speaker notes

@davearonson

@@best_route = WORST_ROUTE
@@generations = 0

def self.done?(population)
 @@generations += 1
 better = population.
 select { |r| r.fitness > @@best_route.fitness }
 if better.any?
 @@best_route = better.sort_by(&:fitness).last
 @@generations = 0
 return false
 else
 return @@generations >= 100
 end
end

www.Codosaur.us

. . . is exactly the same as last time, except that now we're using Routes instead of Truckloads.

Since we're not done, we now . . .

Speaker notes

@davearonson

Initialize

Assess

Done?

Select Breed

Mutate

www.Codosaur.us

. . . pick some breeders, and this time we're going to delve into Roulette Wheel selection. The concept there is that
every candidate has a chance to be selected, but the size of the chance is based on the candidate's fitness. (So I think
this is actually a misnomer; one would hope that an actual roulette wheel has an equal chance for all the numbers! But,
they didn't ask my opinion when naming this.) The simplest version is that it's just equal, or at least directly proportional,
to the fitness. The . . .

Speaker notes

@davearonson

def self.select_breeders(pop)
 p1 = pick_winner(pop)
 p2 = pick_winner(pop - [p1])
 [p1, p2]
end

def self.pick_winner(pop)
 total = pop.map(&:fitness).sum
 target = rand(total)
 so_far = 0
 pop.each do |p|
 so_far += p.fitness
 return p if so_far > target
 end
end

www.Codosaur.us

. . . code for that is of course more complex than last time, when we simply chose the top two. Basically what we're
doing is summing up all the fitnesses, generating a random number from 0 to the sum minus 1, and figuring out which
route's range that falls in. To do that, we iterate over the routes, summing the fitnesses again, until we exceed the
random number. When that happens, it means that the one whose fitness we just added is the lucky winner. Then we
do that again, without the one we already picked.

As usual we could make it even more complex, such as by applying some function to the actual fitness. We might
amplify the fitter routes' chances by squaring the fitness, or diminish them by taking the square root, or a logarithm or
whatever, or we could make those things part of the definition of the fitness in the first place. We could also bias it by
generating that random number differently, with an uneven distribution, whether favoring the best or the middle or
whatever.

If we run this on our current population, we just might randomly wind up with . . .

Speaker notes

1st 2nd 3rd 4th 5th 6th 7th 8th Fit

MAD LUX BRU AMS LIS AND MTC PAR 3563

LUX BRU AND MAD PAR LIS AMS MTC 2329

@davearonson www.Codosaur.us

. . . these two. These weren't the top two, in fact they were #4 and #8, which is fairly poor, averaging out to #6 out of
10. But just like in real life, to quote the late great . . .

Speaker notes

@davearonson Image: https://commons.wikimedia.org/wiki/File:Tom_Petty_(8191710373).jpg www.Codosaur.us

. . . Tom Petty, even the losers get lucky sometimes. So now it's time to . . .

Speaker notes

@davearonson

Initialize

Assess

Done?

Select Breed

Mutate

www.Codosaur.us

. . . breed them together. Breeding Traveling Salesman routes is much more complex than breeding Knapsack
contents. It's actually still an area of ongoing research! But the simplest way to breed Traveling Salesman routes is
fairly similar to ordinary crossover: we . . .

Speaker notes

@davearonson

def self.breed(p1, p2)
 xover = rand(CITIES.length + 1)
 cities = []
 cities[0 .. (xover - 1)] =
 p1.stops.slice(0, xover)
 cities[xover .. (CITIES.length - 1)] =
 p2.stops.reject { |city| cities.member?(city) }
 return Route.new(cities)
end

www.Codosaur.us

. . . take a random number, between 0 and the number of cities, inclusive, copy that many from the first parent, and fill
the rest (if any) from the second parent. However, we don't do it by copying them straight down in place, like with
regular crossover, but by using the missing cities, in the order they appear in the second parent, no matter exactly where
they appeared. So, supposing we have a crossover point of 3, the result would look like . . .

Speaker notes

1st 2nd 3rd 4th 5th 6th 7th 8th
MAD LUX BRU AMS LIS AND MTC PAR

+
LUX BRU AND MAD PAR LIS AMS MTC

=
MAD LUX BRU AND PAR LIS AMS MTC

@davearonson www.Codosaur.us

. . . this, with Madrid, Luxembourg, and Brussels copied straight down, and then Andorra la Vella, Paris, Lisbon,
Amsterdam, and Monte Carlo filled in in the order they appear in the second parent. It happens to match their order in
the first parent, but that's actually unusual, and they're not consecutive in the second one, interrupted by Madrid. Do
you see how that works? (PAUSE FOR CONFIRMATION, EXPLAIN IF NEEDED.) Next, as you may recall, this is just
one of ten results, as we're making a whole new population. One possible result might be . . .

Speaker notes

1st 2nd 3rd 4th 5th 6th 7th 8th
MAD LUX BRU AND PAR LIS AMS MTC
MAD LUX BRU AND PAR LIS AMS MTC
MAD LUX BRU AND PAR LIS AMS MTC
LUX BRU AND MAD PAR LIS AMS MTC
MAD LUX BRU AMS AND PAR LIS MTC
MAD LUX BRU AND PAR LIS AMS MTC
MAD LUX BRU AND PAR LIS AMS MTC
MAD LUX BRU AND PAR LIS AMS MTC
LUX BRU AND MAD PAR LIS AMS MTC
LUX BRU AND MAD PAR LIS AMS MTC

@davearonson www.Codosaur.us

. . . this. This time we have not only strong family resemblance, but a fair bit of full duplication too. If you want to
continue the biological analogy, you could call them twins. But we get some more variety in the next step:

Speaker notes

@davearonson

Initialize

Assess

Done?

Select Breed

Mutate

www.Codosaur.us

mutation. So how do we mutate a Traveling Salesman route? It's actually pretty easy:

Speaker notes

@davearonson

def mutate()
 i1 = rand(CITIES.length)
 i2 = rand(CITIES.length)
 stops[i1], stops[i2] = [stops[i2], stops[i1]]
end

www.Codosaur.us

we just pick two indices in the array, and swap the cities there. If we wanted to make the code more complex, we could
make some cities or indices more or less likely to swap, or require that they be consecutive, or not consecutive, or we
could have a probability of multiple mutations, but we're going to keep it simple and just do one swap each. The chance
of the two numbers being the same will give us some chance of not really mutating. If we apply this to our current
routes, we might wind up with . . .

Speaker notes

1st 2nd 3rd 4th 5th 6th 7th 8th
BRU LUX MAD AND PAR LIS AMS MTC
MAD LUX BRU MTC PAR LIS AMS AND
MAD LUX BRU AND PAR LIS AMS MTC
LUX BRU AND MAD PAR LIS AMS MTC
MAD LUX BRU AMS AND PAR LIS MTC
LIS LUX BRU AND PAR MAD AMS MTC
AMS LUX BRU AND PAR LIS MAD MTC
PAR LUX BRU AND MAD LIS AMS MTC
LUX BRU MTC MAD PAR LIS AMS AND
LUX BRU AND PAR MAD LIS AMS MTC

@davearonson www.Codosaur.us

. . . this, where the green color means it changed. You can see that there are still many that somewhat resemble others,
but there's no more exact duplication. That's not guaranteed though; some twins could undergo identical mutation, or
some may mutate into twinship, though we could guarantee it with a much more complicated mutation function. Now
that they're in their final forms, we can . . .

Speaker notes

@davearonson

Initialize

Assess

Done?

Select Breed

Mutate

www.Codosaur.us

. . . start our cycle over again by asking how fit they are, and we get . . .

Speaker notes

1st 2nd 3rd 4th 5th 6th 7th 8th Fit
PAR LUX BRU AND MAD LIS AMS MTC 4420
AMS LUX BRU AND PAR LIS MAD MTC 4302
LUX BRU AND PAR MAD LIS AMS MTC 3194
MAD LUX BRU AMS AND PAR LIS MTC 2831
LUX BRU AND MAD PAR LIS AMS MTC 2329
BRU LUX MAD AND PAR LIS AMS MTC 2057
MAD LUX BRU MTC PAR LIS AMS AND 2027
LUX BRU MTC MAD PAR LIS AMS AND 1543
MAD LUX BRU AND PAR LIS AMS MTC 1420
LIS LUX BRU AND PAR MAD AMS MTC 1329

@davearonson www.Codosaur.us

. . . this, after sorting by fitness. Just as before, our best fitness went down! But, also just like before, we haven't lost
that best one, it's recorded in that best_route class variable. Let's let it run to completion, producing . . .

Speaker notes

1st 2nd 3rd 4th 5th 6th 7th 8th Fit Gens
LIS AND MTC LUX PAR BRU AMS MAD 5802 22
LUX BRU PAR MTC AND MAD LIS AMS 6012 18
LIS MAD PAR AMS BRU LUX MTC AND 6275 26
AMS BRU PAR LIS MAD AND MTC LUX 6424 100

@davearonson www.Codosaur.us

. . . these additional best routes, with those fitnesses, that stay as the best for that many generations. On a map, the
final best one, that reigned supreme for a hundred generations, would look like . . .

Speaker notes

@davearonson Image: Image: modified from https://www.mapchart.net/europe.html www.Codosaur.us

. . . this, and we can see it really makes sense, it's roughly what we would have thought of just by eyeballing it.

There are . . .

Speaker notes

@davearonson Image: https://commons.wikimedia.org/wiki/File:Noun_76041_-_Different_Ways.svg www.Codosaur.us

. . . many other ways we can use genetic algorithms. Longer versions of this talk show how to use them to generate
Dungeons & Dragons character stats, and recipes for brewing mead. I'm now working on a system to use them to
schedule the talks for a conference. Mey Beisaron has a talk on using one to schedule her college classes. They can
create images and music, even code. So, think about it, and you might be able to use them for something.

To recap what you've learned here today:

Speaker notes

@davearonson

Genetic Algorithms:
are optimization heuristics shortcuts

www.Codosaur.us

Genetic Algorithms are optimization heuristics, which is fancy-talk for shortcuts to finding good-enough solutions.
They're . . .

Speaker notes

@davearonson

Genetic Algorithms:
are optimization heuristics shortcuts
are simpler than you probably thought

www.Codosaur.us

. . . simpler than you probably thought. They . . .

Speaker notes

@davearonson

Genetic Algorithms:
are optimization heuristics shortcuts
are simpler than you probably thought
can use very simple functions

www.Codosaur.us

. . . can use very simple functions, but it . . .

Speaker notes

@davearonson

Genetic Algorithms:
are optimization heuristics shortcuts
are simpler than you probably thought
can use very simple functions
can be tricky to figure out good functions

www.Codosaur.us

. . . can be tricky to figure out exactly what the functions should do, for best results. This approach is also . . .

Speaker notes

@davearonson

Genetic Algorithms:
are optimization heuristics shortcuts
are simpler than you probably thought
can use very simple functions
can be tricky to figure out good functions
applicable to a wide variety of problems

www.Codosaur.us

. . . applicable to a huge variety of problems, including ones so complex that . . .

Speaker notes

@davearonson

Genetic Algorithms:
are optimization heuristics shortcuts
are simpler than you probably thought
can use very simple functions
can be tricky to figure out good functions
applicable to a wide variety of problems
can create solutions humans would not

www.Codosaur.us

. . . a semi-random algorithm can come up with excellent solutions that we humans would never have thought of.

Now, if you have any . . .

Speaker notes

? ? ? ? ?
T.Rex-2025@Codosaur.us
twitter.com/DaveAronson

linkedin.com/in/DaveAronson

Repo and Slides:
github.com/CodosaurusLLC/tight-genes

Codosaur.us/reds/gen-algs-dd-eu-25-slides

@davearonson www.Codosaur.us

. . . questions, I'll take them now, or at the contact info shown up there. As for the other URLs, the Github one is for the
code, and slides in HTML, and the other one is for the slides as a PDF, complete with a full script... which I've mostly
stuck to. Anyway, any questions?

Speaker notes

