
Tight Genes:
Intro to Genetic Algorithms

by Dave Aronson
T.Rex-2023@Codosaur.us
twitter.com/DaveAronson

linkedin.com/in/DaveAronson
github.com/CodosaurusLLC/tight-genes

Hei, Oslo!

👋
(Hello Oslo!)

@davearonson Image: standard emoji www.Codosaur.us

Hi, osLO!

Speaker notes

Jeg er Dave Aronson,

(I'm Dave Aronson,)
@davearonson Image: me speaking at JSConf Hawai'i 2020! www.Codosaur.us

Yai ar Dave Aronson,

Speaker notes

T. Rex fra Codosaurus,

(the T. Rex of Codosaurus,)
@davearonson Image: my company logo! www.Codosaur.us

Tay Rex fra Codosowroos,

Speaker notes

og jeg fløy hit

🛫 . . . 🛬
(and I flew here)

@davearonson Image: standard emoji www.Codosaur.us

oh yai floy heet

Speaker notes

på kjæledyret mitt pterodactyl

(on my pet pterodactyl)
@davearonson

Images: https://pixabay.com/vectors/dinosaur-tyrannosaurus-t-rex-6273164/
and https://pixabay.com/vectors/bird-flying-wings-dinosaur-ancient-44859/ www.Codosaur.us

po KYELihDEEReh mit PeroduckTEEL

Speaker notes

for å lære deg om

�
(to teach you about)

@davearonson Image: standard emoji www.Codosaur.us

for oh LAARa dai om

Speaker notes

Genetiske Algoritmer.

(Genetic Algorithms.)
@davearonson Image: https://pixabay.com/vectors/genetic-testing-gene-panel-genetics-2316642 www.Codosaur.us

GeNEtiskEH AlgoREETmer?

Speaker notes

Men . . .

☝
(But . . .)

@davearonson Image: standard emoji www.Codosaur.us

M'n . . .

Speaker notes

jeg skal gjøre det på engelsk.

�
(I will do it in English.)

@davearonson Image: standard emoji www.Codosaur.us

Yai skuhl YOR-uh deuh po en-YILSK.

Mainly because you’ve just heard almost all the Norwegian I speak.

So what are genetic algorithms anyway? They are . . .

Speaker notes

@davearonson Image: https://icon-icons.com/download/49925/PNG/512/ www.Codosaur.us

optimization meta-heuristics,

Speaker notes

@davearonson

WAT?!
www.Codosaur.us

which is fancy-talk for . . .

Speaker notes

Optimization Meta-Heuristic:
category of shortcuts

to find
"good enough" solutions

(ideally the best,
but OK if not).

@davearonson www.Codosaur.us

. . . types of shortcuts to find a good solution to a problem, ideally the best, but we usually have to settle for something
"good enough", due to constraints like time or money.

There are many kinds of optimization heuristics, but what makes genetic algorithms unique is that (as you may have
guessed from the name) they are inspired by . . .

Speaker notes

@davearonson Image: https://commons.wikimedia.org/wiki/File:Darwin-chart.PNG www.Codosaur.us

. . . real-world biological evolution, mainly the principles of survival of the fittest, random combination of different sets of
genes into one new set, and random mutation.

The history goes back to 1950, when . . .

Speaker notes

Alan Turing
@davearonson Image: https://cdn.britannica.com/81/191581-050-8C0A8CD3/Alan-Turing.jpg www.Codosaur.us

. . . Alan Turing, as in Turing Test, Turing Machine, Turing Completeness, and so on, proposed a "learning machine" in
which the mechanism of learning would be similar to evolution. Nothing much came of that, nor of genetic algorithms in
general... for a few decades. But then they finally got a bit of traction. The first commercial product based on genetic
algorithms, a mainframe toolkit for . . .

Speaker notes

@davearonson Image: https://pxhere.com/en/photo/267871 www.Codosaur.us

. . . industrial processes, came out in the late 1980's, from General Electric. In 1989 a genetic algorithm toolkit called
Evolver came out for PCs. These days, MATLAB has a few genetic algorithm tools built-in, and many programming
languages have genetic algorithm libraries available. However, the actual uses of genetic algorithms remain mostly
obscure, used by companies in their internal industrial processes, logistics, scheduling, and so on.

But once in a while, they get used for something more interesting. Most famously, in 2005 . . .

Speaker notes

@davearonson Image: https://www.nasa.gov/sites/default/files/thumbnails/image/nasa-logo-web-rgb.png www.Codosaur.us

. . . NASA used a genetic algorithm to design an . . .

Speaker notes

ST5 satellite antenna, & quarter for scale
@davearonson Image: https://www.jpl.nasa.gov/nmp/st5/IMAGES/st5-antenna.jpg www.Codosaur.us

. . . antenna for the ST5 series of satellites, launched in 2006. (No, that's not just a paperclip that got all bent up by
someone sitting bored and fidgeting, in a meeting.) The NASA Jet Propulsion Laboratory website says: "Its unusual
shape is expected because most human antenna designers would never think of such a design." And that is one of the
great advantages of this approach. These algorithms are much less hampered by expectations of similarity to past
solutions. However, today we'll only be looking at much simpler problem domains, for the sake of making
understandable demos.

So how do genetic algorithms work? They consist of a simple series of steps:

Speaker notes

@davearonson

Initialize

www.Codosaur.us

First, we create an initial population of candidates. In Genetic Algorithm lingo, these are called "chromosomes", but
since most living beings contain many chromosomes in each and every cell, I don't like that term, I think it leads to
confusion, so I'm just going to say "candidates". I've also heard them called individuals, solutions, or phenotypes, to use
an actual genetic term, but most people don't know that word, so I'll skip that one too.

The next step is to . . .

Speaker notes

@davearonson

Initialize

⬇

Assess

www.Codosaur.us

. . . assess the "fitness" of each candidate, according to whatever criteria we want to apply. We do it here mainly
because it supplies the data usually used in the next step, which is to ask, are we . . .

Speaker notes

@davearonson

Initialize

⬇

Assess

⬅

Done?

www.Codosaur.us

. . . done yet? This is usually based on the fitness, but could be based on other criteria, and we'll discuss some of those
later, or a combination. If we're not done, then next we . . .

Speaker notes

@davearonson

Initialize

⬇

Assess

⬅

Done?

⬇

Select
www.Codosaur.us

. . . select some candidates to breed the next generation. This is also usually based on the fitness, to simulate survival
of the fittest.

After that, as you may have guessed, we use those candidates we just selected . . .

Speaker notes

@davearonson

Initialize

⬇

Assess

⬅

Done?

⬇

Select ➡ Breed
www.Codosaur.us

. . . to breed a new population. Some of the previous population, especially the fittest ones, may be carried over into this
new population, but usually not.

Next is a very important but easily forgotten step, which is to . . .

Speaker notes

@davearonson

Initialize

⬇

Assess

⬅

Done?

⬇

Select ➡ Breed

⬆

Mutate

www.Codosaur.us

. . . mutate those new candidates, so that we get some more diversity in the gene pool.

Finally, we . . .

Speaker notes

@davearonson

Initialize

⬇

Assess

⬅

Done?

⬇

Select ➡ Breed

⬆

Mutate

⬅

www.Codosaur.us

. . . go back to step 2, assessing their fitness. This sequence could be represented at a high level with some rather
simple code, like so:

Speaker notes

@davearonson www.Codosaur.us

. . . in Ruby. Now let's take a closer look at what goes on in each step, by working through an example.

Speaker notes

@davearonson

Initialize

⬇

Assess

⬅

Done?

⬇

Select ➡ Breed

⬆

Mutate

⬅

www.Codosaur.us

First we create an initial population of candidates. But what is a candidate, and how do we create one? These are
different solutions to some problem, usually represented as different instances of the same data structure. They could
be any data structure we want, so long as we can evaluate their fitness, combine old ones to make a new one, and
mutate them. The simplest common type of candidate is . . .

Speaker notes

01001000
01100101
01101100
01101100
01101111
00100000
01110111
01101111
01110010
01101100
01100100
00100001

@davearonson www.Codosaur.us

. . . a simple string of bits. This will do fine for candidates that consist of a simple series of yes/no decisions. This may
sound simplistic, but there is a huge class of problems that boil down to this, called . . .

Speaker notes

Knapsack / Rucksack / Backpack / Whatever!

@davearonson Image: https://publicdomainvectors.org/en/free-clipart/Rucksack-vector-image/9910.html www.Codosaur.us

. . . knapsack problems, which is a category of constrained resource allocation problems. The canonical example is that
you have a knapsack -- or rucksack, backpack, or whatever you call it -- and many things you want to carry in it, but they
won't all fit, or the total weight is more than you can carry, or some such similar constraint, or combination of
constraints. So you want to find the combination of items, that will fit the constraints, and has the maximum value. That
could be the literal cash value, as we'll see in a moment, or something more metaphorical. To look at a concrete
example, suppose we know . . .

Speaker notes

� 🚚
@davearonson Image: standard emoji www.Codosaur.us

. . . a farmer, with a smallish truck, and he needs to decide what to take to market each week. And on this farm he has .

. .

Speaker notes

@davearonson

🐄 🐄 🐄 🐄
Images: standard emoji www.Codosaur.us

. . . some cows. (EIEIO!) So among the things he can take to market are:

Speaker notes

🐄 🥛 🧀 🧈
🍨 🥩

@davearonson Images: standard emoji plus https://www.rawpixel.com/image/6130389/ www.Codosaur.us

. . . cows, milk, cheese, butter, ice cream, meat, and leather. For the sake of simplicity, we won't differentiate between
between price and profit, nor dairy versus meat cows, and he can only take a set amount of each item, and always has
that amount on hand. His truck has room to take all the items, but it can only carry so much weight, so that's our
constraint. His choices are as follows:

Speaker notes

What Unit Qty Pounds Value
Cow cow 1 1,500 $2,000
Milk 1-gal jug 200 1,720 $800
Cheese 5-lb wheel 200 1,000 $12,000
Butter 1-lb block 1,000 1,000 $3,000
Ice Cream 1-gal tubs 200 1,000 $2,000
Meat side 4 1,280 $8,000
Leather hide 20 1,100 $6,000
TOTAL WEIGHT 8,600

@davearonson www.Codosaur.us

You don't need to remember all that, just notice that it totals 8,600 pounds. But, his truck's suspension can only handle
two tons, or 4,000 pounds. Let's see what happens if we use a genetic algorithm to determine a "good enough"
truckload. First we need a way to represent each candidate. In code, we could represent them as a class, and create
one randomly, like so:

Speaker notes

@davearonson www.Codosaur.us

Whoa, that looks like we're just making a random number! That's right, we're making a random number with seven bits,
so we have a random 1 or 0 for each of our seven possible items. We could get as complex as we want in this function,
like dictating a minimum or maximum number of items, but let's keep it simple.

To create an initial population, we can just create a bunch of candidates and stuff them into an array, . . .

Speaker notes

@davearonson www.Codosaur.us

. . . like so. (This could actually be done in much more idiomatic Ruby, so don't scold me for that, I'm just trying to keep
it easily understandable by people who don't know Ruby.) So if we create a population of ten Truckloads, we might wind
up with a list like this:

Speaker notes

Cow Milk Cheese Butter Ice Cream Meat Leather
Y N N Y N Y Y
N N N Y Y N N
N Y N N N Y N
N Y Y N Y N N
Y Y Y N Y Y N
Y Y N Y N N N
Y N N Y N Y N
Y Y N N N N N
N N Y Y Y Y Y
N N Y N N Y N

@davearonson www.Codosaur.us

Why ten? Because that's what fits on the screen in a decently readable size. If I were doing this for real, with a much
more complex domain, I might use a hundred, or a thousand, or even more.

But how did we get from random numbers to those combinations? Behind the scenes, that translation might look like
this:

Speaker notes

@davearonson www.Codosaur.us

We have a list of items we can take, as instances of an inner class describing them. To check what's in our cargo
manifest, represented by our Truckload's contents value, we can iterate through the list of possible items, checking
whether the corresponding bit is on.

Now that we're done with Initialization, we . . .

Speaker notes

@davearonson

Initialize

⬇

Assess

⬅

Done?

⬇

Select ➡ Breed

⬆

Mutate

⬅

↑

www.Codosaur.us

. . . assess how "fit" each of these truckloads is. We do this with what's called a "fitness function". Just like how
biological creatures might be perfectly fit for one environment but a lousy fit for another, this should reflect how fit a
candidate is for some particular purpose. In this case, we already know we want the total value, BUT, any load that's too
heavy for the truck, is worthless. In Ruby, that would look like this:

Speaker notes

@davearonson www.Codosaur.us

We iterate through the possible items, summing up the weights of the ones we want to take. (Writing the bit_on?
function is left as an exercise, to keep this code simple.) If that exceeds the truck's capacity, we return zero, else we
use the same technique to sum up the values of those same items.

Again, we could get as complex as we want in this function, and NASA's antenna fitness function certainly must have
been. For instance, if the truck were even smaller, and we had the volume of each item, we could also total up the
volume, and make sure it all fits.

Anyway, if we run this fitness function on our population, we get this:

Speaker notes

Cow Milk Cheese Butter Ice Cream Meat Leather Fitness
Y N N Y N Y Y 0
N N N Y Y N N 5,000
N Y N N N Y N 8,800
N Y Y N Y N N 14,800
Y Y Y N Y Y N 0
Y Y N Y N N N 0
Y N N Y N Y N 13,000
Y Y N N N N N 2,800
N N Y Y Y Y Y 0
N N Y N N Y N 20,000

@davearonson www.Codosaur.us

So now that we've assessed their fitness, we . . .

Speaker notes

@davearonson

Initialize

⬇

Assess

⬅

Done?

⬇

Select ➡ Breed

⬆

Mutate

⬅

↑
www.Codosaur.us

. . . check if we're done. So what are our criteria? The function can be simple, but it can take some thinking to figure out
what the function should do. With a knapsack problem, a good solution can be made totally worthless by adding just
one more item, and thereby exceeding the constraints. So, we're going to record the best we've seen, and stop if we
haven't seen anything better within 100 generations.

Why 100? Pretty much random. It seems like enough for a good chance for improvement, and since what we're doing
is so simple, and our population is so small, using lots of generations isn't very slow. In Ruby, that would look like this:

Speaker notes

@davearonson www.Codosaur.us

When the code is initially parsed, we set the initial best combo as empty, and we set how many generations it's been
since we saw that, as zero. When the function is called, we increment the number of generations, look at the fitness of
each candidate in the current population, and select only the ones with a better fitness than the best one so far. If there
are none, then we return true if it's been 100 generations since the best one, else we return false. If there is at least one
candidate exceeding our benchmark, we sort them by fitness, take the fittest one, make that our new benchmark, and
reset the generation counter.

Again, we can get as complex as we want, not only in checking the maximum fitness, but we could look at other
stopping criteria, like the average or minimum fitness, or achieving some specific level of maximum fitness, like some
maximum number of generations, or amount of time, (whether clock time or CPU or whatever), or a STOP button, or
many other ways, or a combination of ways.

Since we're not done, the next step is to . . .

Speaker notes

@davearonson

Initialize

⬇

Assess

⬅

Done?

⬇

Select ➡ Breed

⬆

Mutate

⬅

↑

www.Codosaur.us

. . . select some candidates to breed the next generation. The obvious way is to take the top two most fit, like so:

Speaker notes

@davearonson www.Codosaur.us

We take the population, sort them by fitness in descending order, and take the first two. Out of our current population,
we would choose:

Speaker notes

Cow Milk Cheese Butter Ice Cream Meat Leather Fitness

N N Y N N Y N 20,000

N Y Y N Y N N 14,800

@davearonson www.Codosaur.us

these two. As usual, we also could get more complicated, like selecting two randomly with each candidate having a
chance to be selected, proportional to their fitness, called "Roulette Wheel" selection, and lots of other ways.

We could also take more than two, whether to breed all pairs in that set or to combine more than two at once. Or we
could combine strategies, such as using all trios from a randomly chosen five, with the fitter ones having a better chance
to be chosen.

Now that we've chosen our breeders, next we . . .

Speaker notes

@davearonson

Initialize

⬇

Assess

⬅

Done?

⬇

Select ➡ Breed

⬆

Mutate

⬅
↑

www.Codosaur.us

. . . breed them. The usual way is called crossover. This consists of taking the data points, or in Genetic Algorithm
lingo, the "genes", from one parent, up to some randomly chosen crossover point, then switching to the other parent.
This can be extended with multiple crossover points, but we're just going to use one, like so:

Speaker notes

@davearonson www.Codosaur.us

We establish the crossover point for each new candidate, as a random number between zero and how many items there
are, inclusive. Then we iterate through the list of items, by index number. If we haven't yet hit the crossover point, we
get the decision for that item from the first parent, else we get it from the other parent. This means that it could be all
copied from one parent or the other, or it could switch at some point. If we do this once, with a crossover point of 3, so
we take 3 values from the first parent, that would get us a result like this:

Speaker notes

@davearonson

Cow Milk Cheese Butter Ice Cream Meat Leather

N N Y N N Y N
+

N Y Y N Y N N
=

N N Y N Y N N

Cow Milk Cheese Butter Ice Cream Meat Leatherwww.Codosaur.us

But this is just one of ten results, because we're making a whole new population, like so:

Speaker notes

@davearonson www.Codosaur.us

This is just like how we created the initial population, except that instead of each candidate being made from scratch,
they're the product of breeding our chosen breeders. The whole list might look like this:

Speaker notes

Cow Milk Cheese Butter Ice Cream Meat Leather
N N Y N Y N N
N Y Y N Y N N
N N Y N Y N N
N N Y N N Y N
N N Y N Y N N
N N Y N Y N N
N N Y N N N N
N N Y N Y N N
N N Y N Y N N
N N Y N N Y N

@davearonson www.Codosaur.us

Lots of family resemblance there, eh? None of these loads include a cow, butter, or leather, and they all include
cheese. That's because both of our two breeders were like that. If we were to just continue breeding the fittest of each
generation, we wouldn't ever see any loads including a cow, butter, leather, or no cheese, but we fix that in the next
step, which is to . . .

Speaker notes

@davearonson

Initialize

⬇

Assess

⬅

Done?

⬇

Select ➡ Breed

⬆

Mutate

⬅↑
www.Codosaur.us

. . . mutate them. Again, I'm going to keep it very simple, and give each gene a 1 in 4 chance of flipping. In code, that
looks like this:

Speaker notes

@davearonson www.Codosaur.us

We iterate through the item numbers, and for each one, if a random number from zero to three is a zero, we flip that bit.
Again, we could get as complex as we want, like having some genes more likely to mutate than others, or having some
minimum or maximum number of mutations per candidate, or all kinds of other options. If we run this mutation function
on these new candidates, we might wind up with something like this:

Speaker notes

Cow Milk Cheese Butter Ice Cream Meat Leather
N Y N Y N N Y
N N Y Y N N N
Y N Y Y Y Y N
Y Y Y Y Y Y N
Y Y Y Y N N Y
N Y N Y N N Y
Y Y N Y N N Y
N N Y N Y N N
Y N N Y Y N N
N N Y N Y N N

@davearonson www.Codosaur.us

. . . where green means that it changed. You can see that we now DO have some truckloads that include a cow, butter,
or leather, or no cheese. Now we go back to . . .

Speaker notes

@davearonson

Initialize

⬇

Assess

⬅

Done?

⬇

Select ➡ Breed

⬆

Mutate

⬅

↑

www.Codosaur.us

. . . assessing the fitness of these new candidates. If we sort on fitness descending, just to make it easy to find the best,
we get this:

Speaker notes

Cow Milk Cheese Butter Ice Cream Meat Leather Fitness
N N Y Y N N N 15,000
N N Y N Y N N 14,000
N N Y N Y N N 14,000
N Y N Y N N Y 9,800
N Y N Y N N Y 9,800
Y N N Y Y N N 7,000
Y Y Y Y N N Y 0
Y Y Y Y Y Y N 0
Y N Y Y Y Y N 0
Y Y N Y N N Y 0

@davearonson www.Codosaur.us

Oh noes! Our maximum fitness actually went down! As you may recall, our previous best one scored 20,000. But don't
worry, as you may recall from our "are we done yet" function, we hang onto the best one, and just try to outdo it, so we
haven't lost it. The next generation might look like this:

Speaker notes

Cow Milk Cheese Butter Ice Cream Meat Leather Fitness
N Y Y N N Y N 20,800
N N Y N N Y N 20,000
N N Y N N Y N 20,000
N N N N N Y Y 14,000
N N Y N N N N 12,000
N Y N N Y N N 2,800
Y N Y Y N Y N 0
Y Y Y N Y Y N 0
N Y Y N Y Y N 0
N Y Y Y N Y N 0

@davearonson www.Codosaur.us

. . . a small improvement over our prior best! So, we set that top one as our benchmark, and reset the counter of
generations since we saw it. If we let this run to completion, we might wind up with something like this:

Speaker notes

Cow Milk Cheese Butter Ice Cream Meat Leather Fitness
N N Y N N Y Y 26,000
N N Y Y N N Y 21,000
N Y N N Y Y N 10,800
Y N N N N N Y 8,000
N N N N N Y N 8,000
N N N Y Y N N 5,000
N Y N N N N N 8,00
N Y N N N N N 8,00
Y Y N Y N N Y 0
Y Y N Y Y Y Y 0

@davearonson www.Codosaur.us

. . . with our best truckload scoring 26,000, made up of cheese, meat, and leather. So that's one complete run of a
genetic algorithm. If we wanted to check whether that was the best that this algorithm could produce, we could just run
it again, as many times as we like, within reason, since it's so much faster than brute force. Okay, maybe writing all this
code is not so much faster when we've only got seven items, and such simple criteria, but if we had to choose among
many more items, with more complex criteria, for many truckloads a day, this might be more worthwhile.

Now, suppose we want to evolve . . .

Speaker notes

@davearonson Image: https://image.tmdb.org/t/p/w500/ajbdFQLvJTlNu4LnVWGnNMb4mZ8.jpg (used for edu fair use) www.Codosaur.us

. . . something completely different. Suppose we want to "evolve" a good set of stats for a Dungeons and Dragons
fighter character, so our candidates are tuples of numbers, rather than strings of bits. D&D character stats are . . .

Speaker notes

@davearonson

STRength
INTelligence
DEXterity
CONstitution
WISdom
CHArisma

3d6 each
ignoring STR 18/xx

www.Codosaur.us

. . . Strength, Intelligence, Dexterity, Constitution, Wisdom, and Charisma, each determined by rolling three six-sided
dice, or 3d6 for short. (I'm going to gloss over how you can sometimes have extra strength.) In Ruby that might look
like this:

Speaker notes

@davearonson www.Codosaur.us

(Defining the roll function is left as an exercise.) So if we create an initial population of ten Characters, it might look like
this:

Speaker notes

Str Int Dex Con Wis Cha
11 9 9 10 7 15
4 14 8 12 13 10
9 14 15 11 9 16

14 15 10 7 6 14
13 12 7 13 11 10
12 12 10 9 5 16
11 12 9 13 6 12
10 14 12 8 8 16
14 7 8 9 8 8
14 12 13 5 13 13

@davearonson www.Codosaur.us

So that's the Initialize step. The next step is . . .

Speaker notes

@davearonson

Initialize

⬇

Assess

⬅

Done?

⬇

Select ➡ Breed

⬆

Mutate

⬅

↑

www.Codosaur.us

. . . to assess how "fit" each one of these characters is. We're trying to evolve a good set of Fighter stats, so it should be
based mainly on strength and constitution. Dexterity is also helpful. Intelligence, wisdom, and charisma, not so much,
but we don't want them too low, for the sake of occasional saving throws. I tried several different things, such as . . .

Speaker notes

@davearonson www.Codosaur.us

totaling up double the strength, the constitution, and half the dexterity. But, the other stats tended to get too low, and
even the dexterity. So I tried . . .

Speaker notes

@davearonson www.Codosaur.us

prioritizing them linearly, adding up six times the strength, five times the constitution, and so on down to one times the
charisma. But then the other stats got too high, and the characters seemed too generalized. So I finally settled on this:

Speaker notes

@davearonson www.Codosaur.us

. . . prioritizing the stats again but much more strongly, totaling up 32 times the strength, 16 times the constitution, and
so on down to one times the charisma. Here we see that even though the fitness function itself can be very simple, it
can be difficult to figure out one that will yield good results.

If we run this on our population, we get this:

Speaker notes

Str Int Dex Con Wis Cha Fit
11 9 9 10 7 15 649
4 14 8 12 13 10 476
9 14 15 11 9 16 674

14 15 10 7 6 14 726
13 12 7 13 11 10 760
12 12 10 9 5 16 682
11 12 9 13 6 12 703
10 14 12 8 8 16 632
14 7 8 9 8 8 708
14 12 13 5 13 13 719

@davearonson www.Codosaur.us

Now that we've assessed their fitness, we can ask, are we . . .

Speaker notes

@davearonson

Initialize

⬇

Assess

⬅

Done?

⬇

Select ➡ Breed

⬆

Mutate

⬅

↑
www.Codosaur.us

. . . done? What are our criteria? Let's say we're done if any candidates get 90% of the way to the maximum score of
our fitness function. I'll spare you the math, but that would be 1,021. In code, checking that would look like this:

Speaker notes

@davearonson www.Codosaur.us

Very simple. None of our current candidates score anywhere near 1021, so we . . .

Speaker notes

@davearonson

Initialize

⬇

Assess

⬅

Done?

⬇

Select ➡ Breed

⬆

Mutate

⬅

↑

www.Codosaur.us

. . . select some candidates to breed the next generation. Taking the top two scorers again we get:

Speaker notes

Str Int Dex Con Wis Cha Fit

13 12 7 13 11 10 760

14 15 10 7 6 14 726

@davearonson www.Codosaur.us

these two. The abstraction gets a bit more obviously leaky now, because we're ignoring sexes; we have no guarantee
that these characters will be a male and a female, as we're not even making that part of the data. We had the same
leak last time, with the Truckloads, but then it was not so relevant, so I let it slide. Now that they're living beings
(whether humans or elves or whatever), though, we could add such complications, and many other such factors. That
would complicate our breeder selection enormously, maybe even make it impossible to find a viable pair in such a small
population. Anyway, next we actually . . .

Speaker notes

@davearonson

Initialize

⬇

Assess

⬅

Done?

⬇

Select ➡ Breed

⬆

Mutate

⬅
↑

www.Codosaur.us

. . . breed our chosen pair, this time using another common strategy, of essentially flipping a coin for each gene, like so:

Speaker notes

@davearonson www.Codosaur.us

We go through the stats one by one, flip a coin (or "roll a d2"), and if it comes up 1, we get that stat from the first parent,
else we get it from the other parent. That could get us a result like this:

Speaker notes

Str Int Dex Con Wis Cha
13 12 7 13 11 10

+
14 15 10 7 6 14

=
13 15 10 13 6 10

@davearonson www.Codosaur.us

I've colored the ones from the first parent in green, and the second in red, to show the mixing. But again, this is just one
of ten results, because we're making a whole new population, which might look something like this:

Speaker notes

Str Int Dex Con Wis Cha
13 12 10 7 6 14
13 12 7 13 6 14
14 12 10 13 11 14
14 15 7 13 6 14
13 12 10 13 6 14
14 15 10 7 11 10
14 12 10 13 6 10
13 15 10 13 6 14
13 15 10 13 6 10
14 12 7 7 6 14

@davearonson www.Codosaur.us

There are two things to notice here. First, the number of red and green is not always the same, neither in a single
candidate nor the whole population. It's a series of random coin flips, so on average there will be three and three, but it
could be anything up to six and zero either way. Second, notice the family resemblance! For each stat, there are only
two possible values, or in Genetic Algorithm terms, "alleles", for a total of 64 possible combinations. There would be
only one possible value, and therefore half as many possible combinations, if any stats were the same between the
parents.

At a glance, these look on average much more suitable as fighters than the previous generation. (We'll figure their
actual fitness scores later.) If we were to just continue breeding the fittest of each generation, we wouldn't see any
change, let alone improvement, in the possible values of each stat, in other words, the alleles for each gene. For
instance, the Wisdom would never be anything other than 6 or 11. But again, we fix that in the next step, which is to . . .

Speaker notes

@davearonson

Initialize

⬇

Assess

⬅

Done?

⬇

Select ➡ Breed

⬆

Mutate

⬅↑
www.Codosaur.us

. . . mutate them. Again, I'm going to keep it very simple, and give each stat a 1/3 chance of staying the same, going up
a point, or going down a point, within the valid range. In code, that looks like this:

Speaker notes

@davearonson www.Codosaur.us

For each stat, we add a random number from 0 to 2, and subtract one, which is like adding a random number from -1 to
1, but we clamp it to the range of 3 to 18. Again, we could get as complex as we want, like giving it a higher chance of
going up or down, maybe by multiple points, if it's very low or very high, to simulate the real-world phenomenon of
regression to the mean, or many other options. If we run this on our new population, we wind up with something like
this:

Speaker notes

Str Int Dex Con Wis Cha
14 12 10 7 7 13
12 13 7 14 6 14
13 12 10 14 11 15
15 16 7 14 6 15
13 11 10 12 5 15
13 15 11 7 11 10
14 13 9 12 6 9
14 15 9 13 6 15
13 15 11 12 5 9
13 12 6 6 7 13

@davearonson www.Codosaur.us

. . . where green means it went up, and red means down. Looking at the values in each column, you can see it's now
much more diverse. Now we go back to . . .

Speaker notes

@davearonson

Initialize

⬇

Assess

⬅

Done?

⬇

Select ➡ Breed

⬆

Mutate

⬅

↑

www.Codosaur.us

. . . Step 2, and assess the fitness of these new candidates. If we sort on fitness descending, just to make it easy to find
the best, we get this:

Speaker notes

Str Int Dex Con Wis Cha Fit
15 16 7 14 6 15 851
14 15 9 13 6 15 815
13 12 10 14 11 15 805
14 13 9 12 6 9 785
13 15 11 12 5 9 775
13 11 10 12 5 15 757
12 13 7 14 6 14 742
14 12 10 7 7 13 715
13 15 11 7 11 10 708
13 12 6 6 7 13 635

@davearonson www.Codosaur.us

We can see that this generation is much improved from the prior one. The old one ranged from 476 to 760, and the new
one from 635 to 851. It's still nowhere near our stopping criterion of 1021, so fast-forwarding through six more rounds,
we finally get . . .

Speaker notes

Str Int Dex Con Wis Cha Fit
18 18 9 18 4 13 1029
18 17 7 18 6 14 1014
18 16 8 18 3 13 1011
18 15 7 18 3 13 999
18 16 8 17 4 13 997
18 16 6 18 3 15 997
17 18 8 18 6 13 993
17 16 9 18 3 14 988
18 16 6 17 3 13 979
17 16 8 17 4 12 964

@davearonson www.Codosaur.us

. . . one suitable character, with 18 Strength and Constitution, acceptable though sub-par Dexterity, and surprisingly high
Intelligence. That's not a problem, just a bit of a waste. If we really wanted it more specialized, we could complicate the
fitness function further, and do things like explicitly demand well above average scores in the class's useful stats, and
forbid it to be so high in the others, or at least apply a penalty.

So we've evolved a set of Fighter stats. Let's suppose we don't need any more Fighters in the party . . . but now we
need a Wizard. All we need to do is tweak our fitness function, like so:

Speaker notes

@davearonson www.Codosaur.us

. . . to prioritize intelligence first, then wisdom, dexterity, and so on, down to strength. An initial population would look
roughly the same, since we haven't changed how that is generated, so I'll spare you those steps, but after 11
generations I got . . .

Speaker notes

Str Int Dex Con Wis Cha Fit
12 18 17 12 15 18 1048
14 18 16 9 15 16 1026
15 18 15 10 15 16 1023
13 18 17 11 13 18 1013
14 18 17 10 13 18 1010
13 18 16 8 14 18 1009
12 17 16 11 15 17 1002
12 18 15 9 14 16 1000
14 17 16 10 15 16 998
14 17 17 11 13 18 982

@davearonson www.Codosaur.us

. . . three candidates 90% fit to be wizards. They're mostly pretty good in the other stats, but not so much as to be
obviously better suited for some other class, except that that top one looks like a bard to me.

Remember though that this is all very random. It may converge on a good solution faster, or more slowly, and the
fitness function may be good or poor at getting just the right mix of alleles.

Now, suppose we want to evolve yet another type of thing. By the Rule of Three, it's about time we . . .

Speaker notes

@davearonson Image: from https://www.authoritydental.org/tooth-extraction-recovery www.Codosaur.us

. . . extract the common parts into something they all can use, something with a name like, oh, say, . . .

Speaker notes

@davearonson Image: my picture, of my actual license plate! www.Codosaur.us

. . . Evolver! That's my actual license plate, by the way. I've had it for several years, since long before I ever tried
genetic algorithms, and used that name for this code before I had ever heard of the Evolver PC toolkit that I mentioned
near the start.

Anyway, with just a little bit of tweaking, and a slight sprinkling of fancy Ruby magic dust, we can extract a class that
defines the common parts, and takes another class that defines the varying parts, and run evolution on it, like so:

Speaker notes

@davearonson www.Codosaur.us

That's a lot of code to look at at once, so let's go through it piece by piece. Since it is meant to accept a class, and hold
onto it for later use, we can use . . .

Speaker notes

@davearonson www.Codosaur.us

. . a constructor that just stashes that class. (And also an option for how big a population to use.) How we tell it to "run
evolution" can look like this:

Speaker notes

@davearonson www.Codosaur.us

. . . just a slight variation on our original high-level code. Mainly, we're passing the responsibility for determining whether
we're done, selecting breeders, and mutating each candidate, over to the passed-in class. We're also sorting the
population on descending fitness. Creating the initial population could look like this:

Speaker notes

@davearonson www.Codosaur.us

. . . nearly identical to our original code, but, again, passing the creation responsibility along to our passed-in class.
Breeding a new population could look like this:

Speaker notes

@davearonson www.Codosaur.us

. . . again nearly identical to our original code, but passing the responsibility for how to combine the breeders, over to our
passed-in class.

With this Evolver class handling most of the infrastructure, we don't need to repeat most of the boilerplate that we had in
both the Truckload and Character classes. We can demonstrate that by evolving something else, and supplying only
the parts that vary. So what now? In my spare time, I make . . .

Speaker notes

@davearonson Image: my own pic of five batches of plain mead in progress www.Codosaur.us

. . . mead, a wine-like drink made by fermenting honey. Let's see if we can evolve a good recipe. Our recipe will be
based on two simple factors:

Speaker notes

@davearonson www.Codosaur.us

the ratio of water to honey, and the alcohol tolerance of the yeast we'll use, both by volume. The resulting percent
alcohol by volume, or ABV, and the sweetness, are the criteria on which we'll evaluate the recipes, but I'll spare you the
details of how we figure them out from the inputs. Beyond simple creation, we'll need a . . .

Speaker notes

@davearonson www.Codosaur.us

. . . fitness function. This one looks at how far off we are from our desired target values. We square the error in each
aspect separately, so that something that's, say, one point off in each, will score higher than something that's spot-on in
one but two points off in the other. In other words, we want them both close, not just trading off one for the other directly.

You can see here we are targeting 12% ABV, out of a range from 0 to 20, and 15 "points" of sweetness, which is on a
custom scale . . .

Speaker notes

Level Min Max
Dry 0 9
Semi-Sweet 10 19
Sweet 20 29
Dessert 30 39
Too Sweet 40

@davearonson www.Codosaur.us

. . . of zero to about 80 for anything reasonable as a finished product. Explaining this chart is beyond the scope of this
talk, but if you really want to know, see me later and I'll talk your ears off about mead-making. Anyway, this means that
we're going for roughly typical wine strength, and semi-sweet.

We'll stick with the breeder selection function of just taking the top two most fit, but we'll need a combiner function, to
combine two parents into one, which could look like this:

Speaker notes

@davearonson www.Codosaur.us

. . . sticking with the tactic of flipping a coin to see which parent contributes each gene. Once each candidate
combination is created, we need a method to mutate it, such as . . .

Speaker notes

@davearonson www.Codosaur.us

. . . this. What we do here is to let each figure go up to 19% either up or down, but clamp it within a reasonable range.

Everything else, such as creating the initial population, selecting breeders, breeding a new population, the concept of
how to check if we're done, though with a different threshold, and the overall structure of how it simulates evolution, are
all handled by the Evolver class. To actually use them together would look like this:

Speaker notes

@davearonson www.Codosaur.us

With our current version of Evolver, this would return the current population of Recipes, when the Recipe class says that
it's done.

To demonstrate briefly how it might evolve mead recipes, an initial population might look like this:

Speaker notes

Ratio Tolerance %ABV Sweet Fit
6.50 10.0 7.4 0.0 -145.8
7.00 11.0 7.0 0.0 -150.3
7.50 9.0 6.6 0.0 -154.6
8.00 14.0 6.2 0.0 -158.7
8.50 12.0 5.9 0.0 -162.6
9.00 14.0 5.6 0.0 -166.2
9.00 9.0 5.6 0.0 -166.2

12.50 11.0 4.1 0.0 -186.9
12.50 16.0 4.1 0.0 -186.9
13.00 9.0 4.0 0.0 -189.3

@davearonson www.Codosaur.us

. . . showing that we can have negative fitness, and the next generation might look like this:

Speaker notes

Ratio Tolerance %ABV Sweet Fit
5.46 10.6 8.6 0.0 -136.3
5.52 11.7 8.5 0.0 -136.9
5.72 9.6 8.3 0.0 -138.7
5.95 9.4 8.0 0.0 -140.8
5.98 10.7 8.0 0.0 -141.1
6.37 10.9 7.6 0.0 -144.6
6.44 11.3 7.5 0.0 -145.2
6.56 12.2 7.4 0.0 -146.4
7.42 9.7 6.6 0.0 -153.9
7.84 9.6 6.3 0.0 -157.4

@davearonson www.Codosaur.us

. . . with slightly improved fitness and a narrower range, and after just 7 generations, finally this:

Speaker notes

Ratio Tolerance %ABV Sweet Fit
3.46 10.4 10.4 16.4 95.2
3.59 9.9 9.9 17.4 89.5
3.85 8.9 8.9 20.1 64.6
3.42 9.7 9.7 22.5 38.1
4.53 9.2 9.2 6.7 24.0
3.50 9.2 9.2 24.4 4.6
4.33 9.8 9.8 5.3 1.8
3.94 7.7 7.7 27.1 -64.1
4.33 11.0 10.5 0.0 -127.4
3.53 8.3 8.3 30.6 -156.7

@davearonson www.Codosaur.us

with one candidate weaker and sweeter than we want, but within our 90%-fit criterion. If we get really picky and demand
a 99.9% fit, my first run like that took 45 generations, and yielded this:

Speaker notes

Ratio Tolerance %ABV Sweet Fit
3.05 11.8 11.8 15.2 99.9
3.21 10.9 10.9 18.2 88.7
3.34 11.4 11.4 10.8 81.7
3.28 10.5 10.5 19.2 79.8
3.35 11.7 11.7 8.9 62.9
3.31 11.8 11.8 8.8 61.4
3.48 9.7 9.7 21.0 58.9
3.05 13.1 13.1 4.9 -2.9
3.60 11.8 11.8 2.6 -53.9
3.68 12.2 11.9 0.0 -125.0

@davearonson www.Codosaur.us

. . . a tiny bit weaker and sweeter than asked for.

Just like with the DnD characters, if we want to change what we're after, we just have to tweak the fitness function. This
time, I asked for 7% alcohol and sweetness of 5, a low-alcohol dry mead, often called a "session" mead, and still
demanding a 99.9% fit, it took 37 generations to get this:

Speaker notes

Ratio Tolerance %ABV Sweet Fit
6.38 6.9 6.9 5.0 100.0
5.73 7.6 7.6 5.4 99.5
5.32 8.2 8.2 4.9 98.6
5.61 7.6 7.6 6.5 97.3
6.25 6.7 6.7 7.8 92.2
5.34 7.7 7.7 8.8 85.5
5.23 8.8 8.8 1.0 80.7
6.25 8.2 7.7 0.0 74.5
6.02 8.3 7.9 0.0 74.1
5.61 6.8 6.8 12.3 46.5

@davearonson www.Codosaur.us

. . . spot-on in sweetness and just a tiny bit weaker. Then I asked for 16% alcohol and a sweetness of 35, a strong and
sweet mead, historically called sack mead or a great mead, a style very popular in Poland. It took 149 generations,
which was still very fast, because the functions were so simple, to produce this:

Speaker notes

Ratio Tolerance %ABV Sweet Fit
1.69 16.1 16.1 34.9 100.0
1.70 15.8 15.8 36.9 96.4
2.06 13.6 13.6 35.2 94.3
1.96 14.0 14.0 36.5 94.0
1.94 15.4 15.4 27.3 39.9
1.75 14.6 14.6 43.0 33.8
1.92 13.3 13.3 43.8 16.1
1.68 14.2 14.2 50.6 -146.3
1.93 17.6 17.6 10.6 -497.1
1.70 11.8 11.8 67.8 -992.7

@davearonson www.Codosaur.us

. . . just a tiny bit stronger and drier than asked for.

There are many other ways you can use genetic algorithms. They can create images, music, and even code. So, think
about it, and you might be able to use them for something.

To recap what you've learned here today:

Speaker notes

Genetic Algorithms:
are optimization heuristics shortcuts

@davearonson www.Codosaur.us

Genetic Algorithms are optimization heuristics, which is fancy-talk for shortcuts to finding good-enough solutions.
They're . . .

Speaker notes

Genetic Algorithms:
are optimization heuristics shortcuts
are simpler than you probably thought

@davearonson www.Codosaur.us

. . . simpler than you probably thought -- all you have to do is create an initial population, and cycle through five simple
steps, of assessing their fitness, checking if you're done, picking breeders, breeding them, and mutating the new
candidates, over and over until you're done. They . . .

Speaker notes

Genetic Algorithms:
are optimization heuristics shortcuts
are simpler than you probably thought
can use very simple functions

@davearonson www.Codosaur.us

. . . can use very simple functions, but it . . .

Speaker notes

Genetic Algorithms:
are optimization heuristics shortcuts
are simpler than you probably thought
can use very simple functions
can be tricky to figure out good rules

@davearonson www.Codosaur.us

. . . can be tricky to figure out exactly what the functions should do, especially for evaluating fitness and checking if
you're done, so as to make the solutions converge quickly enough, and not ignore too many other very good solutions.
This approach is also . . .

Speaker notes

Genetic Algorithms:
are optimization heuristics shortcuts
are simpler than you probably thought
can use very simple functions
can be tricky to figure out good rules
applicable to a wide variety of problems

@davearonson www.Codosaur.us

. . . applicable to a huge variety of problems, including ones so complex that . . .

Speaker notes

Genetic Algorithms:
are optimization heuristics shortcuts
are simpler than you probably thought
can use very simple functions
can be tricky to figure out good rules
applicable to a wide variety of problems
can create solutions humans would not

@davearonson www.Codosaur.us

. . . a semi-random algorithm can come up with excellent solutions that we humans would never have thought of.

Now, if you have any . . .

Speaker notes

? ? ? ? ?
T.Rex-2023@Codosaur.us
twitter.com/DaveAronson

linkedin.com/in/DaveAronson

Repo and Slides:
github.com/CodosaurusLLC/tight-genes

Codosaur.us/reds/gen-algs-ndc-oslo-23-slides

@davearonson www.Codosaur.us

. . . questions, I'll take them now, or at the contact info shown up there. As for the other URLs, the Github one is for the
code, and slides in HTML, and the other one (as you may have guessed) is for the slides as a PDF, complete with a full
script. Any questions?

Speaker notes

