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Γεια σας, Αθήνα!

(Hello, Athens!)
@davearonson Image: standard emoji www.Codosaur.us



Ya Sas, AhTHEEna!
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Είμαι ο  Dave Aronson,

(I'm Dave Aronson,)
@davearonson Image: me speaking at JSConf Hawai'i 2020! www.Codosaur.us



eeMAY o Dave Aronson,
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ο T. Rex του Codosaurus,

(the T. Rex of Codosaurus,)
@davearonson Image: my company logo! www.Codosaur.us



o T. Rex tu Codosaurus,
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και πέταξα εδώ

 . . . 
(and I flew here)

@davearonson Image: standard emoji www.Codosaur.us



kay paytaxAH ehDOH
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με το κατοικίδιο μου πτεροδάκτυλο

(on my pet pterodactyl)
@davearonson

Images: https://pixabay.com/vectors/dinosaur-tyrannosaurus-t-rex-6273164/
and https://pixabay.com/vectors/bird-flying-wings-dinosaur-ancient-44859/ www.Codosaur.us



meh to katoiKIdio moh pteroDAKtilo
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για να σας μάθω τους

(to teach you about)
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yeh na Sas MAtho tohss

Speaker notes



Γενετικούς Αλγόριθμους.

(Genetic Algorithms.)
@davearonson Image: https://pixabay.com/vectors/genetic-testing-gene-panel-genetics-2316642 www.Codosaur.us



yenetiKOHSS alGOrithmohss.
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Αλλά . . .

(But . . .)
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AHlah . . .
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θα το κάνω στα αγγλικά.

(I will do it in English.)
@davearonson Image: standard emoji www.Codosaur.us



Tha toh KAno sta AngliKAH.

Mainly because you’ve just heard almost all the Greek I speak!

So what are genetic algorithms?  They are . . .
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optimization heuristics,
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WAT?!
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which is fancy-talk for . . .
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Optimization Heuristic:
shortcut to find

"good enough" solutions
(ideally the best,
but OK if not).
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. . . shortcuts to find solutions to a problem, ideally the best, but we usually have to settle for something "good enough",
due to constraints like time or money.

There are many kinds of optimization heuristics, but genetic algorithms are uniquely inspired by . . .
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. . . real-world biological evolution, mainly the principles of survival of the fittest, random combination of old sets of genes
(no, not like I'm wearing) into one new set, and random mutation.

The history goes back to 1950, when . . .
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Alan
Turing
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. . . Alan Turing, as in Turing Test, Turing Machine, and so on, proposed a "learning machine" in which the mechanism of
learning would be similar to evolution.  Nothing much came of that, and it took a few decades for genetic algorithms in
general to get some traction.  The first commercial product based on genetic algorithms, a mainframe toolkit for . . .
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. . . industrial processes, came out in the late 1980's, from General Electric.  These days, MATLAB and such tools have
some genetic algorithm facilities built-in, and many programming languages have genetic algorithm libraries available. 
However, the actual uses of genetic algorithms remain mostly boring and obscure, used by companies in their internal
industrial processes, logistics, scheduling, and so on.

But once in a while, they get used for something more interesting, and more publicly known.  Most famously, in 2005 . . .
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. . . NASA used a genetic algorithm to design an . . .
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ST5 antenna,
and

US quarter
for scale
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. . . antenna for the ST5 series of satellites.  (No, that's not just a paperclip bent up by someone fidgeting in a boring
meeting.)  The NASA Jet Propulsion Laboratory website says: "Its unusual shape is expected because most human
antenna designers would never think of such a design."  And that is one of the great advantages of this approach. 

So how do genetic algorithms work?  They consist of a simple series of steps:
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Initialize
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First, we create an initial population of candidates.  In Genetic Algorithm terms, these are called "chromosomes", but
since most living beings contain many chromosomes in each and every cell, I don't like that term, I think it leads to
confusion, so I'm just going to say "candidates". 

The next step is to . . .
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Initialize

Assess
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. . . assess the "fitness" of each candidate, according to whatever criteria we want to apply.  We do it here mainly
because it supplies the data usually used in the next step, which is to ask, are we . . .
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Initialize

Assess

Done?
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. . . done yet?  This is usually based on the fitness, but could be based on other criteria, or a combination.  If we're not
done, then next we . . .
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Initialize

Assess

Done?

Select
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. . . select some candidates to breed the next generation.  This is also usually based on the fitness, to simulate survival
of the fittest. 

After that, we use those candidates we just selected . . .
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Initialize

Assess

Done?

Select Breed
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. . . to breed a new population. 

Next we . . .
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. . . mutate those new candidates, for more diversity in the gene pool.

Finally, we . . .
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. . . go back to step 2, assessing their fitness.  This sequence could be represented at a high level with some rather
simple code, like so:
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how_many = 10  # or however big we want
pop = initial_pop(how_many)
evaluate(pop)
while not done?(pop)
  breeders = select_breeders(pop)
  pop = breed(breeders, how_many)
  mutate(pop)
  evaluate(pop)
end

www.Codosaur.us



This is in Ruby, which I chose because it reads so close to plain English, so even if you don't know Ruby, I'm confident
you'll understand the ideas.

Now let's take a closer look at each step, by working through an example.
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First we create an initial population of candidates.  But what is a candidate, and how do we create one?  These are
different solutions to some problem, usually represented as different instances of the same data structure.  The simplest
common type of candidate is . . .
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01001000
01100101
01101100
01101100
01101111
00100000
01110111
01101111
01110010
01101100
01100100
00100001

@davearonson www.Codosaur.us



. . . a simple string of bits.  This will do fine for candidates that consist of a simple series of yes/no decisions.  This may
sound simplistic, but there is a huge class of problems that boil down to this, called . . .
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Knapsack /
Rucksack /
Backpack /
Whatever!
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. . . knapsack problems.  The canonical example is that you have a knapsack, and many things you want to carry in it,
but they won't all fit, so you want to find the combination of items, that will fit, and has the maximum value.  To look at a
concrete example, suppose we know . . .
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. . . a farmer, with a smallish truck, and he needs to decide what to take to market each week.  And on this farm he has .

. .
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. . . some cows.  (E-I-E-I-O!)  So among the things he can take to market are:

Speaker notes
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. . . cows, milk, cheese, butter, ice cream, meat, and leather.  His truck has room to take all the items, but it can only
carry so much weight, so that's our constraint.  His choices are as follows:
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What Unit Qty Pounds Value
Cow cow 1 1,500 $2,000
Milk 1-gal jug 200 1,720 $800
Cheese 5-lb wheel 200 1,000 $12,000
Butter 1-lb block 1,000 1,000 $3,000
Ice Cream 1-gal tubs 200 1,000 $2,000
Meat side 4 1,280 $8,000
Leather hide 20 1,100 $6,000

TOTAL WEIGHT: 8,600
@davearonson www.Codosaur.us



You don't need to remember all that, just notice that it totals 8,600 pounds.  But, his truck's suspension can only handle
two tons, or 4,000 pounds.  Let's see what happens if we use a genetic algorithm to determine a "good enough"
truckload.  First we need a way to represent each candidate.  In code, we could represent them as a class, and create
one randomly, like so:
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class Truckload
  def initialize()
    @contents = rand(128)
  end
end

www.Codosaur.us



we're making a random number with seven bits, so we have a random 1 or 0 for each of our seven possible items.  We
could get as complex as we want in this function, like dictating a minimum or maximum number of items, but let's keep it
simple.

To create an initial population, we can just create a bunch of candidates and stuff them into an array, . . .
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def self.initial_population(how_many)
  population = []
  for i in 1..how_many
    population.append(self.new)
  end
  return population
end

www.Codosaur.us



. . . like so.  (This could actually be done in much more idiomatic Ruby, so don't scold me for that, I'm just trying to keep
it easily understandable by people who don't know Ruby.) So if we create a population of ten Truckloads, we might wind
up with a list like this:
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Cow Milk Cheese Butter Ice Cream Meat Leather
Y N N Y N Y Y
N N N Y Y N N
N Y N N N Y N
N Y Y N Y N N
Y Y Y N Y Y N
Y Y N Y N N N
Y N N Y N Y N
Y Y N N N N N
N N Y Y Y Y Y
N N Y N N Y N
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We can get from random numbers to those combinations, by iterating over the bits and seeing which are turned on, but
in the interests of time, I'll handwave over those details.  Next, we . . .
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. . . assess how "fit" each of these truckloads is.  We do this with what's called a "fitness function".  (Surprise!)  In this
case, we already know we want the total value, BUT, any load that's too heavy for the truck, is worthless.  In Ruby, that
would look like this:
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def fitness()
  items = ITEMS.
    with_index.
    select { |_itm, idx| bit_on?(idx, @contents) }.
    map { |item, _idx| itm }
  weight = items.map { |item| itm.weight }.sum
  return 0 if weight > 4000
  return items.map { |item| itm.value }.sum
end

www.Codosaur.us



We decode which items we want to take, then sum up their weights.  If that exceeds the truck's capacity, we return zero,
else we sum up their values.

Again, we could get as complex as we want in this function, and NASA's antenna fitness function certainly must have
been.

If we run this fitness function on our population, and sort on fitness descending, we get this:
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Cow Milk Cheese Butter Ice Cream Meat Leather Fitness
N N Y N N Y N 20,000
N Y Y N Y N N 14,800
Y N N Y N Y N 13,000
N Y N N N Y N 8,800
N N N Y Y N N 5,000
Y Y N N N N N 2,800
Y N N Y N Y Y 0
Y Y Y N Y Y N 0
Y Y N Y N N N 0
N N Y Y Y Y Y 0
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So now that we've assessed their fitness, we . . .
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. . . check if we're done.  So what are our criteria?  The function can be simple, but it can take some thinking to figure out
what the function should do.  With a knapsack problem, a good solution, especially the best, can be made totally
worthless by adding just one more . . .
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. . . waffer-theen item, and thereby exceeding the constraints.  So, we're going to record the best we've seen, and stop if
we don't see anything better within 100 generations.

In Ruby, that would look like this:
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@@best_combo = self.new(0)
@@generations = 0

def self.done?(population)
  @@generations += 1
  better = population.
    select { |c| c.fitness > @@best_combo.fitness }
  if better.any?
    @@best_combo = better.sort_by(&:fitness).last
    @@generations = 0
    return false
  else
    return @@generations >= 100
  end
end

www.Codosaur.us



When this code is initially parsed, we set the initial best combo as empty, and we set how many generations it's been
since we saw that, as zero.  When the function is called, we increment the number of generations, look at the fitness of
the current candidates, and select the ones with a better fitness than our benchmark, the best one so far.  If there are
any better candidates, we make the fittest one our new benchmark, reset the generation counter, and return false.  Else
if it's been 100 generations since the best one, we return true, else we return false. 

Again, we can get as complex as we want, not only in checking the maximum fitness, but we could look at other
stopping criteria, like achieving some specific level of maximum fitness, some maximum number of generations, or
amount of time, or let the user click a STOP button, or many other ways, or a combination of ways.

Since we're not done, the next step is to . . .
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. . . select some candidates to breed the next generation.  The obvious way is to take the top two most fit, like so:
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def self.select_breeders(population)
  return population.
    sort_by(&:fitness).
    reverse.
    take(2)
end
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We take the population, sort them by fitness in descending order, and take the first two.  Out of our current population,
we would choose:
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Cow Milk Cheese Butter Ice Cream Meat Leather Fitness

N N Y N N Y N 20,000

N Y Y N Y N N 14,800
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these two.  As usual, we also could get more complicated, and there are some common more complex alternatives.  For
instance, with "Roulette Wheel" selection, we would select the candidates randomly, but each one has a chance to be
selected, proportional to their fitness. 

Now that we've chosen our breeders, next we . . .
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. . . breed them.  The usual way is called crossover.  This consists of taking the data points, or in Genetic Algorithm
terms, the "genes", from one parent, up to some randomly chosen crossover point, then switching to the other parent,
like so:
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def self.combine(p1, p2)
  cross_point = rand(ITEMS.count + 1)
  list = (0..ITEMS.count).
    map { |index|
      parent = index < cross_point ? p1 : p2
      parent.contents & (1 << index)
    }.
    sum
  return self.new(list)
end

www.Codosaur.us



We establish the crossover point for each new candidate, as a random number between zero and how many items there
are, inclusive.  Then we iterate through the list of items.  If we haven't yet hit the crossover point, we get the decision for
that item from the first parent, else we get it from the other parent.  If we do this once, with a crossover point of 3, that
would get us a result like this:
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Cow Milk Cheese Butter Ice Cream Meat Leather

N N Y N N Y N
+

N Y Y N Y N N
=

N N Y N Y N N
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But this is just one of ten results, because we're making a whole new population, like so:
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def self.new_population(p1, p2, how_many)
  population = []
  for i in 1..how_many
    population.append(self.breed(p1, p2))
  end
  return population
end
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This is just like how we created the initial population, except that instead of each candidate being made from scratch,
they're the product of breeding our chosen breeders.  The whole list might look like this:
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Cow Milk Cheese Butter Ice Cream Meat Leather
N N Y N Y N N
N Y Y N Y N N
N N Y N Y N N
N N Y N N Y N
N N Y N Y N N
N N Y N Y N N
N N Y N N N N
N N Y N Y N N
N N Y N Y N N
N N Y N N Y N
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Lots of family resemblance there, eh?  None of these loads include a cow, butter, or leather, and they all include
cheese.  That's because both of our two breeders were like that.  If we were to just continue breeding the fittest of each
generation, we wouldn't ever see any loads including a cow, butter, leather, or no cheese, but we fix that in the next
step, which is to . . .
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. . . mutate them.  Again, I'm going to keep it very simple, and give each gene a 1 in 4 chance of flipping.  In code, that
looks like this:
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def maybe_mutate()
  (0..ITEMS.count).each do |index|
    if rand(4) == 0
      @contents ^= (1 << index)
    end
  end
end

www.Codosaur.us



We iterate through the item numbers, and for each one, if a random number from zero to three is a zero, we flip that bit. 
Again, we could get as complex as we want, like having some genes more likely to mutate than others, or having some
minimum or maximum number of mutations per candidate, or all kinds of other options.  If we run this mutation function
on these new candidates, we might wind up with something like this:
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Cow Milk Cheese Butter Ice Cream Meat Leather
N Y N Y N N Y
N N Y Y N N N
Y N Y Y Y Y N
Y Y Y Y Y Y N
Y Y Y Y N N Y
N Y N Y N N Y
Y Y N Y N N Y
N N Y N Y N N
Y N N Y Y N N
N N Y N Y N N
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. . . where green means that it changed.  You can see that we now DO have some truckloads that include a cow, butter,
or leather, or no cheese.  Now we go back to . . .
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. . . assessing the fitness of these new candidates, and we get this:
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Cow Milk Cheese Butter Ice Cream Meat Leather Fitness
N N Y Y N N N 15,000
N N Y N Y N N 14,000
N N Y N Y N N 14,000
N Y N Y N N Y 9,800
N Y N Y N N Y 9,800
Y N N Y Y N N 7,000
Y Y Y Y N N Y 0
Y Y Y Y Y Y N 0
Y N Y Y Y Y N 0
Y Y N Y N N Y 0
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Oh noes!  Our maximum fitness actually went down!  As you may recall, our previous best one scored 20,000.  But don't
worry, as you may recall from our "are we done yet" function, we hang onto the best one, and just try to outdo it, so we
haven't lost it. The next generation might look like this:
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Cow Milk Cheese Butter Ice Cream Meat Leather Fitness
N Y Y N N Y N 20,800
N N Y N N Y N 20,000
N N Y N N Y N 20,000
N N N N N Y Y 14,000
N N Y N N N N 12,000
N Y N N Y N N 2,800
Y N Y Y N Y N 0
Y Y Y N Y Y N 0
N Y Y N Y Y N 0
N Y Y Y N Y N 0
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. . . a small improvement over our prior best!  So, we set that top one as our benchmark, and reset the counter of
generations since we saw it.  If we let this run to completion, we might wind up with something like this:
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Cow Milk Cheese Butter Ice Cream Meat Leather Fitness
N N Y N N Y Y 26,000
N N Y Y N N Y 21,000
N Y N N Y Y N 10,800
Y N N N N N Y 8,000
N N N N N Y N 8,000
N N N Y Y N N 5,000
N Y N N N N N 8,00
N Y N N N N N 8,00
Y Y N Y N N Y 0
Y Y N Y Y Y Y 0
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. . . with our best truckload scoring 26,000, made up of cheese, meat, and leather.  So that's one complete run of a
genetic algorithm.  If we wanted to check whether that was the best that this algorithm could produce, we could just run
it again, as many times as we like, within reason, since it's so much faster than brute force.  Okay, maybe writing all this
code is not so much faster when we've only got seven items, and such simple criteria, but if we had to choose among
many more items, with more complex criteria, for many truckloads a day, creating a genetic algorithm might well be
worthwhile.

Now, suppose we want to evolve . . .
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. . . something completely different.  Suppose we want to "evolve" a good set of stats for a Dungeons and Dragons
fighter character, so our candidates are tuples of numbers, rather than strings of bits.  D&D character stats are . . .
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STRength
INTelligence
DEXterity
CONstitution
WISdom
CHArisma

3d6 each
ignoring STR 18/xx
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. . . Strength, Intelligence, Dexterity, Constitution, Wisdom, and Charisma, each determined by rolling three six-sided
dice, or 3d6 for short.  (I'm going to gloss over how you can sometimes have extra strength.)  In Ruby that might look
like this:
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class Character
  def initialize()
    @str = roll(3, 6)
    @int = roll(3, 6)
    @dex = roll(3, 6)
    @con = roll(3, 6)
    @wis = roll(3, 6)
    @cha = roll(3, 6)
  end

www.Codosaur.us



So if we create an initial population of ten Characters, it might look like this:
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Str Int Dex Con Wis Cha
11 9 9 10 7 15
4 14 8 12 13 10
9 14 15 11 9 16

14 15 10 7 6 14
13 12 7 13 11 10
12 12 10 9 5 16
11 12 9 13 6 12
10 14 12 8 8 16
14 7 8 9 8 8
14 12 13 5 13 13
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The next step is . . .
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. . . to assess how "fit" each one of these characters is.  We're trying to evolve a good set of Fighter stats, so it should be
based mainly on strength, constitution, and dexterity.  Intelligence, wisdom, and charisma, not so much, but we don't
want them too low, for the sake of occasional saving throws.  I tried several different things, such as . . .
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def fitness()
  str * 2 + con + dex / 2
end
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totaling up double the strength, the constitution, and half the dexterity.  But, the other stats tended to get too low, and
even the dexterity.  So I tried . . .
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def fitness()
  stats = [str, con, dex, int, wis, cha]
  (0..5).
    map { |idx|
      stats[idx] * (6 - idx)
    }.
    sum
end
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prioritizing them linearly, adding up six times the strength, five times the constitution, and so on down to one times the
charisma.  But then the other stats got too high, and the characters seemed too generalized.  So I finally settled on this:
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def fitness()
  stats = [str, con, dex, int, wis, cha]
  (0..5).
    map { |idx|
      stats[idx] * 2 ** (5 - idx)
    }.
    sum
end
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. . . prioritizing the stats again but much more strongly, totaling up 32 times the strength, 16 times the constitution, and
so on down to one times the charisma.  Here we see that even though the fitness function itself can be very simple, it
can be difficult to figure out one that will yield good results, whatever that means in the situation at hand.

If we run this on our population, and sort them, we get this:
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Str Int Dex Con Wis Cha Fit
13 12 7 13 11 10 760
14 15 10 7 6 14 726
14 12 13 5 13 13 719
14 7 8 9 8 8 708
11 12 9 13 6 12 703
12 12 10 9 5 16 682
9 14 15 11 9 16 674

11 9 9 10 7 15 649
10 14 12 8 8 16 632
4 14 8 12 13 10 476
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Now that we've assessed their fitness, we can ask, are we . . .
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. . . done?  What are our criteria?  Let's say we're done if any candidates get 90% of the way to the maximum score of
our fitness function.  I'll spare you the math, but that would be 1,021.  In code, checking that would look like this:
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def Character.done?(population)
  population.any? { |cand|
    cand.fitness >= 2021
  }
end
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Very simple.  None of our current candidates score anywhere near 1021, so we . . .
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. . . select some candidates to breed the next generation.  Taking the top two scorers again we get:
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Str Int Dex Con Wis Cha Fit

13 12 7 13 11 10 760

14 15 10 7 6 14 726
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these two.  And then of course we actually . . .
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. . . breed our chosen pair, this time using another common strategy, of essentially flipping a coin for each gene, like so:
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def Character.breed(p1, p2)
  char = Character.new
  char.str = rand(2) == 1 ? p1.str : p2.str
  char.int = rand(2) == 1 ? p1.int : p2.str
  char.dex = rand(2) == 1 ? p1.dex : p2.str
  char.con = rand(2) == 1 ? p1.con : p2.str
  char.wis = rand(2) == 1 ? p1.wis : p2.str
  char.cha = rand(2) == 1 ? p1.cha : p2.str
end
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We go through the stats one by one, flip a coin (or "roll a d2"), and if it comes up 1, we get that stat from the first parent,
else we get it from the other parent.  That could get us a result like this:
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Str Int Dex Con Wis Cha
13 12 7 13 11 10

+
14 15 10 7 6 14

=
13 15 10 13 6 10
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But again, this is just one of ten results, because we're making a whole new population, which might look something like
this:
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Str Int Dex Con Wis Cha
13 12 10 7 6 14
13 12 7 13 6 14
14 12 10 13 11 14
14 15 7 13 6 14
13 12 10 13 6 14
14 15 10 7 11 10
14 12 10 13 6 10
13 15 10 13 6 14
13 15 10 13 6 10
14 12 7 7 6 14
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There are two things to notice here.  First, the number of red and green is not always the same, neither in a single
candidate nor the whole population.  It's a series of random coin flips, so on average there will be three and three, but
just like with the Truckloads, it could be anything up to six and zero either way.  Second, notice the family resemblance
again!  Even though we're no longer using yes/no decisions, for each stat, there are only two possible values, or in
Genetic Algorithm terms, "alleles", for a total of 64 possible combinations.  There would be only one possible value, and
therefore half as many possible combinations, if any stats were the same between the parents.

At a glance, these look on average much more suitable as fighters than the previous generation.  (We'll figure their
actual fitness scores later.)  Just like before, if we were to simply continue breeding the fittest of each generation, we
wouldn't see any change, let alone improvement, in the possible values of each stat.  For instance, the Wisdom would
never be anything other than 6 or 11.  But again, we fix that in the next step, which is to . . .
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. . . mutate them.  Again, I'm going to keep it very simple, and give each stat a 1/3 chance of staying the same, going up
a point, or going down a point, within the valid range.  In code, that could look like this:
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def maybe_mutate()
  @str = maybe_mutate_stat(@str)
  @int = maybe_mutate_stat(@int)
  @dex = maybe_mutate_stat(@dex)
  @con = maybe_mutate_stat(@con)
  @wis = maybe_mutate_stat(@wis)
  @cha = maybe_mutate_stat(@cha)
end

def maybe_mutate_stat(stat)
  (stat + rand(3) - 1).clamp(3, 18)
end
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For each stat, we add a random number from 0 to 2, and subtract one, which is like adding a random number from -1 to
1, but we clamp it to the range of 3 to 18.  Again, we could get as complex as we want, like giving it a higher chance of
going up or down, maybe by multiple points, if it's very low or very high, or many other options.  If we run this on our new
population, we wind up with something like this:
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Str Int Dex Con Wis Cha
14 12 10 7 7 13
12 13 7 14 6 14
13 12 10 14 11 15
15 16 7 14 6 15
13 11 10 12 5 15
13 15 11 7 11 10
14 13 9 12 6 9
14 15 9 13 6 15
13 15 11 12 5 9
13 12 6 6 7 13
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. . . where green means it went up, and red means down.  Looking at the values in each column, you can see it's now
much more diverse.  Now we go back to . . .
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. . . Step 2, and assess the fitness of these new candidates, which yields this result:
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Str Int Dex Con Wis Cha Fit
15 16 7 14 6 15 851
14 15 9 13 6 15 815
13 12 10 14 11 15 805
14 13 9 12 6 9 785
13 15 11 12 5 9 775
13 11 10 12 5 15 757
12 13 7 14 6 14 742
14 12 10 7 7 13 715
13 15 11 7 11 10 708
13 12 6 6 7 13 635
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We can see that this generation is much improved from the prior one.  The old one ranged from 476 to 760, and the new
one from 635 to 851.  It's still nowhere near our stopping criterion of 1021, so fast-forwarding through six more rounds,
we finally get . . .
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Str Int Dex Con Wis Cha Fit
18 18 9 18 4 13 1029
18 17 7 18 6 14 1014
18 16 8 18 3 13 1011
18 15 7 18 3 13 999
18 16 8 17 4 13 997
18 16 6 18 3 15 997
17 18 8 18 6 13 993
17 16 9 18 3 14 988
18 16 6 17 3 13 979
17 16 8 17 4 12 964
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. . . one suitable character, with 18 Strength and Constitution, acceptable though sub-par Dexterity, and surprisingly high
Intelligence.  That's not a problem, just a bit of a waste.  If we really wanted it more specialized, we could complicate the
fitness function further, and do things like explicitly demand well above average scores in the class's useful stats, and
forbid it to be so high in the others, or at least apply a penalty.

So we've evolved a set of Fighter stats.  Let's suppose we don't need any more Fighters in the party . . . but now we
need a Wizard.  All we need to do is tweak our fitness function, like so:
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def fitness()
  # below is the only line that changed!
  stats = [int, wis, dex, con, cha, str]
  (0..5).
    map { |idx| stats[idx] * 2 ** (5 - idx) }.
    sum
end
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. . . to prioritize intelligence first, then wisdom, dexterity, and so on, down to strength.  An initial population would look
roughly the same, since we haven't changed how that is generated, so I'll spare you those steps, but after 11
generations I got . . .
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Str Int Dex Con Wis Cha Fit
12 18 17 12 15 18 1048
14 18 16 9 15 16 1026
15 18 15 10 15 16 1023
13 18 17 11 13 18 1013
14 18 17 10 13 18 1010
13 18 16 8 14 18 1009
12 17 16 11 15 17 1002
12 18 15 9 14 16 1000
14 17 16 10 15 16 998
14 17 17 11 13 18 982
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. . . three candidates 90% fit to be wizards.  They're mostly pretty good in the other stats, but not so much as to be
obviously better suited for some other class, except that that top one looks like a bard to me.

There are many other ways we can use genetic algorithms.  They can create images, music, even code, and I'm now
working on a system to schedule conference talks.  So, think about it, and you might be able to use them for something.

To recap what you've learned here today:
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Genetic Algorithms are optimization heuristics, which is fancy-talk for shortcuts to finding good-enough solutions. 
They're . . .
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Genetic Algorithms:
are optimization heuristics shortcuts
are simpler than you probably thought
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. . . simpler than you probably thought.  They . . .
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Genetic Algorithms:
are optimization heuristics shortcuts
are simpler than you probably thought
can use very simple functions

@davearonson www.Codosaur.us



. . . can use very simple functions, but it . . .
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Genetic Algorithms:
are optimization heuristics shortcuts
are simpler than you probably thought
can use very simple functions
can be tricky to figure out good functions
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. . . can be tricky to figure out exactly what the functions should do.  This approach is also . . .
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. . . applicable to a huge variety of problems, including ones so complex that . . .
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Genetic Algorithms:
are optimization heuristics shortcuts
are simpler than you probably thought
can use very simple functions
can be tricky to figure out good functions
applicable to a wide variety of problems
can create solutions humans would not
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. . . a semi-random algorithm can come up with excellent solutions that we humans would never have thought of.

Now, if you have any . . .
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twitter.com/DaveAronson
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Repo and Slides:
github.com/CodosaurusLLC/tight-genes

Codosaur.us/reds/gen-algs-open-23-slides
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. . . questions, I'll take them now, or at the contact info shown up there.  As for the other URLs, the Github one is for the
code, and slides in HTML, and the other one is for the slides as a PDF, complete with a full script.  Any questions?
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