Speaker Verification Anti-Spoofing : Replay and Imitation Attacks

Bhusan Chettri, Supervised by: Dr. Bob L. Sturm and Dr. Ioannis Patras

> Machine Listening Lab, Queen Mary University of London

> > 14 June, 2017

Automatic speaker recognition

Spoofing challenge

Experiments

Research goals and plans

Automatic speaker verification (ASV) and identification

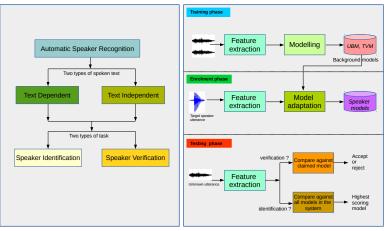


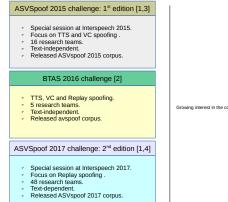
Figure 1 - Overview of Automatic Speaker Recognition Systems

Figure 2 - Phases in Automatic Speaker Recognition Systems

Speaker modeling approaches

- Gaussian mixture models (GMM) [1]
- GMM-Universal background models (GMM-UBM) [1]
- ► GMM-supervector+SVM [1]
- Joint factor analysis [2]
- i-vectors (state of the art)[2]
- Deep neural networks [3]
- 1. Tomi Kinnunen and Haizhou Li, "An overview of text-independent speaker recognition: from features to supervectors", Speech communication, 2010.
- N. Dehak, P.J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet. "Front-End Factor Analysis for Speaker Verification", IEEE TASLP, 2011.
- F. Richardson, D. Reynolds, and N. Dehak. "Deep neural network approaches to speaker and language recognition", IEEE Signal Processing Letters, October 2015.

Spoofing voice biometric (ASV) system



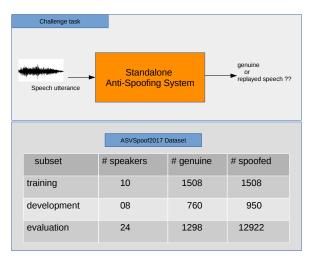
1. Z. Wu, N. Evans, T. Kinnunen, J. Yamagishi, F. Alegre, and H. Li. "Spoofing and countermeasures for speaker verification: a survey", Speech Communications, 2015.

2. https://lyrebird.ai/

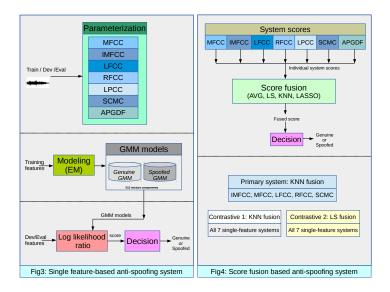
3. https://helpx.adobe.com/audition/using/text-to-speeech.html

ASV Spoofing challenge Overview

Growing interest in the community


1. http://www.asvspoof.org/

2. https://ieee-biometrics.org/btas2016/


Zhizheng Wu et, al. "ASVspoof 2015: the First Automatic Speaker Verification Spoofing and Countermeasures Challenge". Interspeech 2015.

4. Tomi Kinnunen et. al. "The ASVspoof 2017 Challenge: Assessing the Limits of Audio Replay Attack Detection in the Wild". Interspeech 2017 (to appear).

ASVSpoof 2017 spoofing challenge

Our anti-spoofing system

Performance

Table 1: Performance, based on equal error rate (EER %), on ASVspoof 2017 development and evaluation data.

System	Development set	Evaluation set
baseline	11.4	30.6
Primary	1.9 ± 0.73	34.78
Contrastive1	2.12 ±0.76	37.65
Contrastive2	3.25 ±0.84	36.33

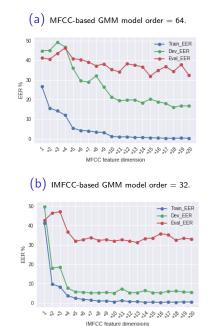
ASVSpoof 2017 Challenge results

Table 2: Top 5 systems of ASVSpoof 2017 replay spoofing challenge [1]

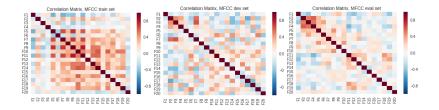
System Name	EER	Description		
Baseline	30.6	Based on CQCC 90d		
S01	6.73	CNN+GMM, iVector+SVM,CNN-RNN; score fusion.		
S02	12.39	PLP, MFCC and CQCC system fusion.		
S03	14.31	8 features; GMM and FFNN; fusion.		
S04	14.93	6 features; GMM; fusion.		
S05	16.35	FBank features; GMM and CTDNN; fusion.		

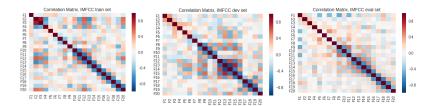
 Tomi Kinnunen et. al, "The ASVspoof 2017 Challenge: Assessing the Limits of Audio Replay Attack Detection in the Wild", Interspeech 2017 (to appear).

Post-evalution experiments

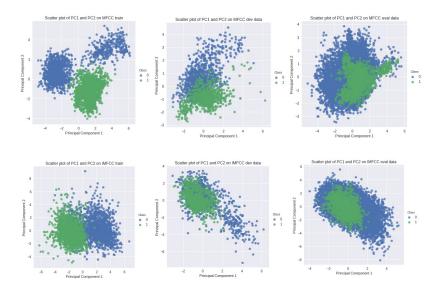

Table 3: Fused systems obtained after post evaluation. F1-F4 are static+delta+acceleration (SDA) 60d-based score fusion systems. S1-S7 corresponds to MFCC, IMFCC, LFCC, RFCC,LPCC, SCMC and APGDF based systems.

System	Fusion	Dev set	Eval set	
F1	S1-S7+B (KNN)	2.76 ± 1.02	33.64	
F2	S1-S7+B (AVG)	7.56	31.39	
F3	S1-S6+B (AVG)	7.74	30.4	
F4	S1-S5+B (AVG)	8.03	29.17	
F5	S1 (S)	4.33	34.3	
F6	S1 (SDA)	5.44	30.8	


Table 4: Comparing performance of 20 dimensional static MFCC andIMFCC GMM systems trained using 10EM iterations.


Model order	Train		Dev		Eval	
	MFCC	IMFCC	MFCC	IMFCC	MFCC	IMFCC
512	0.06	0.04	15.6	4.5	35.3	35.2
64	0.19	0.19	14.8	5.03	33.7	34.2
32	0.24	0.51	17.1	5.4	40.4	31.5

Performance on feature dimension



Multivariate analysis: Correlation

Multivariate analysis: PCA

- $1. \ \mbox{Database}$ for ASV and spoofing research.
- 2. Research collaboration: Sheffield University & University of Eastern Finland.
- 3. Literature review: ASV spoofing.
- 4. Actively been supervised: 18 supervision logs.
- 5. Submitted paper in Interspeech-2017.
- 6. Multi-variate analysis work (going on).

End goals

- 1. Build speaker models to combat mimicry and replay spoofing attacks.
- 2. Alternative applications of speaker models: spoken language learning, entertainment.
- 3. Investigating neural network approaches to anti-spoofing.